Citation: | LI Wen-gang, SUN Yao-sheng, YAO Qiang, CHEN Fang, LIU Jing-yi. REVIEW ON POLLUTION STATUS AND ADVANCED TREATMENT TECHNOLOGIES OF EMERGING ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 77-87. doi: 10.13205/j.hjgc.202108010 |
[1] |
TRAN N H,REINHARD M,GIN K Y,et al.Occurrence and fate of emerging contaminants in municipal wastewater treatment plants from different geographical regions-a review[J].Water Research,2018,133:182-207.
|
[2] |
李婷睿.基于海绵城市理念的智慧水务应用研究[J].给水排水,2017,53(7):129-135.
|
[3] |
KOSMA C I,LAMBROPOULOU D A,ALBANIS T A,et al.Investigation of PPCPs in wastewater treatment plants in Greece:occurrence,removal and environmental risk assessment[J].Science of the Total Environment,2014,466/467:421-438.
|
[4] |
BEN W W,ZHU B,YUAN X J,et al.Occurrence,removal and risk of organic micropollutants in wastewater treatment plants across China:comparison of wastewater treatment processes[J].Water Research,2018,130:38-46.
|
[5] |
PABLO G,GROS M,AHRENS L,et al.Impact of on-site,small and large scale wastewater treatment facilities on levels and fate of pharmaceuticals,personal care products,artificial sweeteners,pesticides,and perfluoroalkyl substances in recipient waters[J].Science of the Total Environment,2017,601/602:1289-1297.
|
[6] |
CZEKALSKI N,SIGDEL R,BIRTEL J,et al.Does human activity impact the natural antibiotic resistance background?abundance of antibiotic resistance genes in 21 Swiss lakes[J].Environment International,2015,81:45-55.
|
[7] |
KUMAR A,PAL D.Antibiotic resistance and wastewater:correlation,impact and critical human health challenges[J].Journal of Environmental Chemical Engineering,2018,6(1):52-58.
|
[8] |
MARTI E,JOFRE J,BALCAZAR J L,et al.Prevalence of antibiotic resistance genes and bacterial community composition in a river influenced by a wastewater treatment plant[J].PLOS ONE,2013,8(10):e78906.
|
[9] |
SHARMA V K,JOHNSON N,CIZMAS L,et al.A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes[J].Chemosphere,2016,150:702-714.
|
[10] |
SHEYLA A O,PINTO PINTO G,GARCIA-ENCINA P A,et al.Ecotoxicity and environmental risk assessment of pharmaceuticals and personal care products in aquatic environments and wastewater treatment plants[J].Ecotoxicology,2014,23(8):1517-1533.
|
[11] |
CHRISTINA R,HAPESHI E,et al.Long-term wastewater irrigation of vegetables in real agricultural systems:concentration of pharmaceuticals in soil,uptake and bioaccumulation in tomato fruits and human health risk assessment[J].Water Research,2017,109:24-34.
|
[12] |
RIEMENSCHNEIDER C,AL-RAGGAD M,MOEDER M,et al.Pharmaceuticals,their metabolites,and other polar pollutants in field-grown vegetables irrigated with treated municipal wastewater[J].J Agric Food Chem.,2016,64(29):5784-5792.
|
[13] |
WANG M,PENG C,CHEN W,et al.Ecological risks of polycyclic musk in soils irrigated with reclaimed municipal wastewater[J].Ecotoxicology and Environmental Safety,2013,97:242-247.
|
[14] |
JING X,YAO G,LIU D,et al.Effects of wastewater irrigation and sewage sludge application on soil residues of chiral fungicide benalaxyl[J].Environmental Pollution,2017,224:1-6.
|
[15] |
MARANO R B M,ZOLTI A,JURKEVITCH E,et al.Antibiotic resistance and class 1 integron gene dynamics along effluent,reclaimed wastewater irrigated soil,crop continua:elucidating potential risks and ecological constraints[J].Water Research,2019,164:114906.
|
[16] |
ABDEL-SHAFY H I,MANSOUR M S M.A review on polycyclic aromatic hydrocarbons:source,environmental impact,effect on human health and remediation[J].Egyptian Journal of Petroleum,2016,25(1):107-123.
|
[17] |
MEZZANOTTE V,ANZANO M,COLLINA E,et al.Distribution and removal of polycyclic aromatic hydrocarbons in two Italian municipal wastewater treatment plants in 2011-2013[J].Polycyclic Aromatic Compounds,2016,36(3):213-228.
|
[18] |
LIU L Y,KUKUCKA P,VENIER M,et al.Differences in spatiotemporal variations of atmospheric PAH levels between North America and Europe:data from two air monitoring projects[J].Environment International,2014,64:48-55.
|
[19] |
ABD MANAN T S B,KHAN T,SIVAPALAN S,et al.Application of response surface methodology for the optimization of polycyclic aromatic hydrocarbons degradation from potable water using photo-Fenton oxidation process[J].The Science of the Total Environment,2019,665:196-212.
|
[20] |
李博.污水处理厂中PACs的迁移转化规律和归趋模型研究[D].哈尔滨:哈尔滨工业大学,2016.
|
[21] |
DENG Y,BONILLA M,REN H,et al.Health risk assessment of reclaimed wastewater:A case study of a conventional water reclamation plant in Nanjing,China[J].Environment international,2017,112:235-242.
|
[22] |
SUBEDI B,KANNAN K.Fate of artificial sweeteners in wastewater treatment plants in New York State,U.S.A.[J].Environmental Science & Technology,2014,48(23):13668-13674.
|
[23] |
HAMANN E,STUYFZAND P J,GRESKOWIAK J,et al.The fate of organic micropollutants during long-term/long-distance river bank filtration[J].Science of the Total Environment,2016,545/546:629-640.
|
[24] |
STEPIEN D K,DIEHL P,HELM J,et al.Fate of 1,4-dioxane in the aquatic environment:from sewage to drinking water[J].Water Research,2014,48:406-419.
|
[25] |
DOURSON M L,HIGGINBOTHAM J,CRUM J,et al.Update:Mode of action (MOA) for liver tumors induced by oral exposure to 1,4-dioxane[J].Regulatory Toxicology and Pharmacology,2017,88:45-55.
|
[26] |
MARGOT J,ROSSI L,BARRY D A,et al.A review of the fate of micropollutants in wastewater treatment plants[J].Wiley Interdisciplinary Reviews:Water Homepage,2015,2(5):457-487.
|
[27] |
耿存珍,段玉双,王艺璇,等.有机磷系阻燃剂的全球污染现状[J].生态毒理学报,2016,11(2):124-133.
|
[28] |
李素珍,付卫强,冯承莲,等.有机磷酸酯阻燃剂的环境暴露、环境行为和毒性效应研究进展[J].环境工程,2018,36(9):35,180
-184.
|
[29] |
WEI G L,LI D Q,ZHUO M N,et al.Organophosphorus flame retardants and plasticizers:sources,occurrence,toxicity and human exposure[J].Environmental Pollution,2015,196:29-46.
|
[30] |
高立红.北京市城市环境有机磷酸酯污染水平和分布特征研究[D].北京:北京科技大学,2016.
|
[31] |
LEHNER A F,SAMSING F,RUMBEIHA W K,et al.Organophosphate ester flame retardant-induced acute intoxications in dogs[J].Journal of Medical Toxicology,2010,6(4):448.
|
[32] |
JORGE E,RICE C P,TORRENTS A.Fate of octyl- and nonylphenol ethoxylates and some carboxylated derivatives in three American wastewater treatment plants[J].Environmental Science & Technology,2007,41(19):6815-6821.
|
[33] |
BARBER L B,LOYO-ROSALES J E,RICE C P,et al.Endocrine disrupting alkylphenolic chemicals and other contaminants in wastewater treatment plant effluents,urban streams,and fish in the Great Lakes and Upper Mississippi River Regions[J].Science of the Total Environment,2015,517:195-206.
|
[34] |
CHANG H S,CHOO K H,LEE B,et al.The methods of identification,analysis,and removal of endocrine disrupting compounds (EDCs) in water[J].Journal of Hazardous Materials,2009,172(1):1-12.
|
[35] |
徐文冰,干志伟.人工甜味剂污染及其在环境中的行为[J].四川农业科技,2016,(9):65-67.
|
[36] |
LUO J,ZHANG Q,CAO M,et al.Ecotoxicity and environmental fates of newly recognized contaminants-artificial sweeteners:a review[J].Science of the Total Environment,2019,653:1149-1160.
|
[37] |
UEBANSO T,OHNISHI A,KITAYAMA R,et al.Effects of low-dose non-caloric sweetener consumption on gut microbiota in mice[J].Nutrients,2017,9(6):560.
|
[38] |
ARDALAN M R,TABIBI H,EBRAHIMZADEH A V,et al.Nephrotoxic effect of aspartame as an artificial sweetener:a brief review[J].Iranian Journal of Kidney Diseases,2017,11(5):339-343.
|
[39] |
CHI L,BIAN X,GAO B,et al.Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice[J].Molecules,2018,23(2):367.
|
[40] |
DING G,PEIJNENBURG W J G M,et al.Physicochemical properties and aquatic toxicity of poly- and perfluorinated compounds[J].Critical Reviews in Environmental Science and Technology,2013,43(6):598-678.
|
[41] |
周珍,胡宇宁,史亚利,等.武汉地区水环境中全氟化合物污染水平及其分布特征[J].生态毒理学报,2017,12(3):425-433.
|
[42] |
MA R,SHIH K.Perfluorochemicals in wastewater treatment plants and sediments in Hong Kong[J].Environmental Pollution,2010,158(5):1354-1362.
|
[43] |
KWON H O,KIM H Y,PARK Y M,et al.Updated national emission of perfluoroalkyl substances (PFASs) from wastewater treatment plants in South Korea[J].Environmental Pollution,2017,220:298-306.
|
[44] |
KATARZYNA S,SURMA M,CIESLIK E,et al.The perfluoroalkyl substances (PFASs) contamination of fruits and vegetables[J].Food Additives & Contaminants:Part A,2018,35(9):1776-1786.
|
[45] |
BURCU Ü,BAKIR E,BAKIR E,et al.Assessment of perfluoroalkyl substances levels in tap and bottled water samples from Turkey[J].Chemosphere,2019,235:1162-1171.
|
[46] |
JIAN J M,GUO Y,ZENG L,et al.Global distribution of perfluorochemicals (PFCs) in potential human exposure source-a review[J].Environment International,2017,108:51-62.
|
[47] |
DOMINGO J L,NADAL M.Human exposure to per- and polyfluoroalkyl substances (PFAS) through drinking water:a review of the recent scientific literature[J].Environmental Research,2019,177:108648.
|
[48] |
CLARA M,SCHEFFKNECHT C,SCHARF S,et al.Emissions of perfluorinated alkylated substances (PFAS) from point sources-identification of relevant branches[J].Water Science & Technology,2008,58(1):59-66.
|
[49] |
AHRENS L,BUNDSCHUH M.Fate and effects of poly- and perfluoroalkyl substances in the aquatic environment:a review[J].Environmental Toxicology and Chemistry,2014,33(9):1921-1929.
|
[50] |
CASTIGLIONI S,VALSECCHI S,POLESELLO S,et al.Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy[J].Journal of Hazardous Materials,2015,282:51-60.
|
[51] |
宋彦敏,周连宁,郝文龙,等.全氟化合物的污染现状及国内外研究进展[J].环境工程,2017,35(10):82-86.
|
[52] |
王士运.全氟化合物PFOA对雄性黑斑蛙的生殖毒效应及机理研究[D].杭州:杭州师范大学,2017.
|
[53] |
蒲生彦,吕雪,张颖,等.基于文献计量的全球活化过硫酸盐氧化技术研究趋势分析[J].环境工程学报,http://kns.cnki.net/kcms/detail/11.5591.X.20200415.1826.002.html.
|
[54] |
LI A,WU Z,WANG T,et al.Kinetics and mechanisms of the degradation of PPCPs by zero-valent iron (Fe0) activated peroxydisulfate (PDS) system in groundwater[J].J Hazard Mater.,2018,357:207-216.
|
[55] |
KANG Y G,YOON H,LEE W,et al.Comparative study of peroxide oxidants activated by nZVI:Removal of 1,4-dioxane and arsenic (Ⅲ) in contaminated waters[J].Chemical Engineering Journal,2018,334:2511-2519.
|
[56] |
WU S H,HE H J,LI X,et al.Insights into atrazine degradation by persulfate activation using composite of nanoscale zero-valent iron and graphene performances and mechanisms[J].Chemical Engineering Journal,2018,341:126-136.
|
[57] |
GU M,FAROOQ U,LU S,et al.Degradation of trichloroethylene in aqueous solution by rGO supported nZVI catalyst under several oxic environments[J].Journal of Hazardous Materials,2018,349:35-44.
|
[58] |
DENG J,DONG H,ZHANG C,et al.Nanoscale zero-valent iron/biochar composite as an activator for Fenton-like removal of sulfamethazine[J].Separation and Purification Technology,2018,202:130-137.
|
[59] |
GAO J,HAN D,XU Y,et al.Persulfate activation by sulfide-modified nanoscale iron supported by biochar (S-nZVI BC) for degradation of ciprofloxacin[J].Separation and Purification Technology,2020,235:116202.
|
[60] |
LI H,ZHU F,HE S,et al.The degradation of decabromodiphenyl ether in the e-waste site by biochar supported nanoscale zero-valent iron/persulfate[J].Ecotoxicology and Environmental Safety,2019,183:109540.
|
[61] |
LUO S,DUAN L,SUN B,et al.Manganese oxide octahedral molecular sieve (OMS-2) as an effective catalyst for degradation of organic dyes in aqueous solutions in the presence of peroxymonosulfate[J].Applied Catalysis B:Environmental,2015,164:92-99.
|
[62] |
DU J,BAO J,LIU Y,et al.Efficient activation of peroxymonosulfate by magnetic Mn-MGO for degradation of bisphenol A[J].Journal of Hazardous Materials,2016,320:150-159.
|
[63] |
REN Y M,LIN L Q,MA J,et al.Sulfate radicals induced from peroxymonosulfate by magnetic ferrospinel MFe2O4 (M=Co,Cu,Mn,and Zn) as heterogeneous catalysts in the water[J].Applied Catalysis B:Environmental,2015,165:572-578.
|
[64] |
YANG S,WU P,LIU J,et al.Efficient removal of bisphenol A by superoxide radical and singlet oxygen generated from peroxymonosulfate activated with Fe0-montmorillonite[J].Chemical Engineering Journal,2018,350:484-495.
|
[65] |
HUANG G,WANG C,YANG C,et al.Degradation of bisphenol A by peroxymonosulfate catalytically activated with Mn1.8Fe1.2O4 nanospheres:synergism between Mn and Fe[J].Environmental Science & Technology,2017,51(21):12611-12618.
|
[66] |
NAM S N,CHO H,HAN J,et al.Photocatalytic degradation of acesulfame K:optimization using the Box-Behnken design (BBD)[J].Process Safety and Environmental Protection,2018,113:10-21.
|
[67] |
FU Y,WU G,GENG J,et al.Kinetics and modeling of artificial sweeteners degradation in wastewater by the UV persulfate process[J].Water Research,2018,150:12-15.
|
[68] |
WANG Y,ZHAO X,CAO D,et al.Peroxymonosulfate enhanced visible light photocatalytic degradation bisphenol A by single-atom dispersed Ag mesoporous g-C3N4 hybrid[J].Applied Catalysis B,2017,211:79-88.
|
[69] |
余韵,陆金鑫,吕贞,等.紫外活化过硫酸盐降解水中三氯蔗糖动力学和机制[J].https://doi.org/10.13227/j.hjkx.202001046.
|
[70] |
丁蕊,赵峰.光催化耦合微生物同步降解污染物[J].化学进展,2017,29(9):1154-1158.
|
[71] |
熊厚锋.可见光催化氧化-生物降解直接耦合技术降解四环素废水的效能与作用机制[D].长春:吉林大学,2017.
|
[72] |
MICHAEL D M,TORRES C I,HAUSNER M,et al.Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor[J].Biotechnology and Bioengineering,2008,101(1):83-92.
|
[73] |
CAI H Y,SUN L,WANG Y M,et al.Unprecedented efficient degradation of phenanthrene in water by intimately coupling novel ternary composite Mn3O4 MnO2-Ag3PO4 and functional bacteria under visible light irradiation[J].Chemical Engineering Journal,2019,369:1078-1092.
|
[74] |
马艳,张鑫,韩小蒙,等.臭氧微纳米气泡技术在水处理中的应用进展[J].净水技术,2019,38(8):64-67.
|
[75] |
郑天龙.微气泡/臭氧-三维电极反应器深度处理腈纶废水的研究[D].北京:北京科技大学,2016.
|
[76] |
SUN Z,CHEN X,YANG K,et al.The progressive steps for TPH stripping and the decomposition of oil refinery sludge using microbubble ozonation[J].Science of the Total Environment,2020,712:135631.
|
[77] |
熊永磊,杨小丽,宋海亮,等.微纳米气泡在水处理中的应用及其发生装置研究[J].环境工程,2016,34(6):23-27.
|
[78] |
NAM G,MOHAMED M M,JUNG J,et al.Enhanced degradation of benzo[a]pyrene and toxicity reduction by microbubble ozonation[J].Environmental Technology,2019,https://doi.org/10.1080/09593330.2019.1683077.
|
[79] |
TAKASHI A,OTOMO K,KUNITOU M,et al.Removal of pharmaceuticals in water by introduction of ozonated microbubbles[J].Separation and Purification Technology,2018,212:483-489.
|
[80] |
施佳泽,张磊,张静,等.微气泡催化臭氧化-生化耦合工程装置运行性能[J].工业水处理,http://kns.cnki.net/kcms/detail/12.1087.X.20200421.1456.002.html.
|
[81] |
KHENG S T,MADEHI N.Ozonation of ofloxacin in water:By-products,degradation pathway and ecotoxicity assessment[J].Science of The Total Environment,2015,520:23-31.
|
[82] |
HU Z,WEN X,SI X,et al.Pre-ultrafiltration or pre-ozonation for EDCs removal in a combined ultrafiltration and ozonation process[J].Journal of Chemical Technology and Biotechnology,2016,91(12):2929-2934.
|
[83] |
谢莎莎.多孔碳材料的制备及其去除水体中卡马西平的研究[D].南昌:南昌航空大学,2018.
|
[84] |
JOSEPH L,JUN B,JANG M,et al.Removal of contaminants of emerging concern by metal-organic framework nanoadsorbents:A review[J].Chemical Engineering Journal,2019,369:928-946.
|
[85] |
ZHUANG S,CHENG R,WANG J,et al.Adsorption of diclofenac from aqueous solution using UiO-66-type metal-organic frameworks[J].Chemical Engineering Journal,2019,359:354-362.
|
[86] |
BISWA N B,JHUNG S H.Adsorptive removal of wide range of pharmaceuticals and personal care products from water using bio-MOF-1 derived porous carbon[J].Microporous and Mesoporous Materials,2018,270:102-108.
|
[87] |
ZHAO R,MA T,LI S,et al.Porous aromatic framework modified electrospun fiber membrane as a highly efficient and reusable adsorbent for pharmaceuticals and personal care products removal[J].American Chemical Society,2019,11(18):16662-16673.
|
[88] |
赵朝成,吴光锐.MOFs复合材料催化降解水中有机污染物的应用研究进展[J].化工进展,2019,38(4):1775-1784.
|
[89] |
卓宁.金属有机框架/高分子复合吸附剂对新兴污染物的吸附研究[D].南京:南京师范大学,2017.
|
[90] |
LI H,ZHANG J,YAO Y,et al.Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants[J].Environmental Pollution,2019,255:113337.
|
[91] |
黄茜.生物质炭固定化微生物对水中壬基酚的去除效果研究[D].杭州:浙江大学,2018.
|
[92] |
袁鑫.固定化微生物强化工业废水处理的研究[D].太原:太原理工大学,2019.
|
[93] |
陈曦.多环芳烃降解菌包埋固定化及其降解特性研究[D].重庆:重庆大学,2018.
|
[94] |
KAZUICHI I,UDAGAWA M,KIMURA Y,et al.Biological wastewater treatment of 1,4-dioxane using polyethylene glycol gel carriers entrapping Afipia sp.D1[J].Journal of Bioscience and Bioengineering,2016,121(2):203-208.
|
[95] |
CHUNG J,LEE,G,CHUNG S,et al.Removal of 1,4-dioxane in water using specific microbe immobilization cells[J].Water,Air, & Soil Pollution,2019,230(6):114.
|
[96] |
孙安琪.炭基材料固定化微生物及其对PAHs污染土壤的修复研究[D].华侨大学,2019.
|
[97] |
DONG R,CHEN D,LI N,et al.Enhancement of organic pollutants bio-decontamination from aqueous solution using newly-designed Pseudomonas putida-Ga/MIl-100(Fe) bio-nanocomposites[J].Environmental Research,2019,173:237-245.
|
[98] |
GARCÍA-DELGADO C,EYMAR E,CAMACHO-ARÉVALO R,et al.Degradation of tetracyclines and sulfonamides by stevensite- and biochar-immobilized laccase systems and impact on residual antibiotic activity[J].Journal of Chemical Technology & Biotechnology,2018,93(12):3394-3409.
|
[99] |
宁甲练,陈志莉,汪楚依,等.固定化漆酶降解水中酚类污染物的研究进展[J].水处理技术,2019,45(2):13-17.
|
[100] |
王小琴,张耿崚,李清荷,等.利用固定化技术与添加表面活性剂增强双酚A降解率的研究[J].环境科学学报,2017,37(9):3342-3348.
|
[101] |
MOKHTAR A,NISHIOKA T,MATSUMOTO H,et al.Novel biodegradation system for bisphenol A using laccase-immobilized hollow fiber membranes[J].International Journal of Biological Macromolecules,2019,130:737-744.
|
[102] |
李彦莹,李雪花,杨先海,等.有机污染物生物降解性预测模型[J].生态毒理学报,2012,7(5):549-555.
|
[103] |
陆守昆.植物根系吸收疏水性有机污染物的数学模型构建[D].南京:南京农业大学,2016.
|
[104] |
QI X,LI X,YAO H,et al.Predicting plant cuticle-water partition coefficients for organic pollutants using pp-LFER model[J].Science of the Total Environment,2020,725:138455.s
|
[105] |
TOROPOVA A P,TOROPOV A A.Use of the index of ideality of correlation to improve models of eco-toxicity[J].Environmental Science and Pollution Research,2018,25(31):31771-31775.
|