Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Zhong-qi, ZHAO Yan, LANG Lang, HU Xiao-min, SHAN Shi-liang. PREPARATION OF Fe3O4@CNF@Zn-BTC MATERIAL AND ITS PERFORMANCE IN REMOVING PHOSPHORUS FROM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 93-98. doi: 10.13205/j.hjgc.202108012
Citation: ZHAO Zhong-qi, ZHAO Yan, LANG Lang, HU Xiao-min, SHAN Shi-liang. PREPARATION OF Fe3O4@CNF@Zn-BTC MATERIAL AND ITS PERFORMANCE IN REMOVING PHOSPHORUS FROM WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 93-98. doi: 10.13205/j.hjgc.202108012

PREPARATION OF Fe3O4@CNF@Zn-BTC MATERIAL AND ITS PERFORMANCE IN REMOVING PHOSPHORUS FROM WATER

doi: 10.13205/j.hjgc.202108012
  • Received Date: 2021-01-06
    Available Online: 2022-01-18
  • In view of the current situation of phosphorus pollution such as excessive phosphorus content in effluent of the secondary sedimentation tank of a sewage plant, a new material Fe3O4@CNF@Zn-BTC was synthesized for specific adsorption of phosphorus. It was made of magnetic nano Fe3O4 particles, carboxylated cellulose nanocrystals and metal organic framework Zn-BTC under general laboratory conditions. The loading of CNF material and MOFs material improved the crystallinity of the composite material, and then improved the rigidity and stability of the composite material, and produced the related bonds between TOCNF surface -COO- and Fe and MOFs, which improved the porosity of the composite material and the rigidity of the material at the same time, and overcome the shortcomings of rigidity and stability of MOFs material to a great extent. Fe3O4@CNF@Zn-BTC was characterized by SEM, FTIR, XRD, XPS and BET, and its removal effect on trace phosphorus in water was discussed under normal temperature and pressure. The results showed that the phosphorus content could be reduced to 0.3~0.5 mg/L by adding a small amount of Fe3O4@CNF@Zn-BTC at normal temperature and pressure for 60 minutes, which met the first class A standard specified in GB 18918—2002, and then the average removal rate was as high as 95%. Compared with other conventional phosphorus removal materials such as activated carbon, Fe3O4@CNF@Zn-BTC material had higher phosphorus removal efficiency, simpler recovery, stronger reproducibility, lower cost and easier synthesis process. Therefore, Fe3O4@CNF@Zn-BTC showed great prospects in improving the water quality of phosphorus polluted environment.
  • [1]
    YIN H B,YAN X W,GU X H.Evaluation of thermally-modified calciumrich attapulgite as a low-cost substrate for rapid phosphorus removal in constructed wetlands[J].Water Research,2017,115(May 15):329-338.
    [2]
    CHEN X,ZHOU W Q,PICKETT S T A,et al.Diatoms are better indicators of urban stream conditions:a case study in Beijing,China[J].Ecological Indicators,2016,60:265-274.
    [3]
    林建伟,王虹,詹艳慧,等.氢氧化镧-天然沸石复合材料对水中低浓度磷酸盐的吸附作用[J].环境科学,2016,37(1):208-219.
    [4]
    SHEN K,ZHANG L,CHEN X D,et al.Ordered macro-microporous metal-organic framework single crystals[J].Science,2018,359:206-210.
    [5]
    DHAKSHINAMOORTHY A,LI Z H,GARCIA H.Catalysis and photo-catalysis by metal organic frameworks[J].Chemical Society Reviews,2018,47:8134-8172.
    [6]
    GUO Y,PENG X S.Mass transport through metal organic framework membranes[J].Science China Materials,2019,62:25-42.
    [7]
    JIANG K,ZHANG L,XIA T,et al.A water-stable fcu-MOF material with exposed amino groups for the multi-functional separation of small molecules[J].Science China Mater,2019,62:1315-1322.
    [8]
    SADAT M E,PATEL R,SOOKOOR J,et al.Effect of spatial confinement on magnetic hyperthermia via dipolar interactions in Fe3O4 nanoparticles for biomedical applications[J].Materials Science & Engineering C,2014,42(sep.):52-63.
    [9]
    EICHHORN S J.Cellulose nanowhiskers:promising materials for advanced applications[J].Soft Matter,2011,7(2):303-315.
    [10]
    KHOSHKAVA V,KMAML M R.Effect of cellulose nanocrystals (CNC) particle morphology on dispersion and rheological and mechanical properties of polypropylene/CNC nanocomposites[J].ACS Applied Materials & Interfaces,2014,6(11):8146-8157.
    [11]
    YANAG R T,YU H Y,SONG M L,et al.Flower-like zinc oxide nanorod clusters grown on spherical cellulose nanocrystals via simple chemical precipitation method[J].Cellulose,2016,23(3):1871-1884.
  • Relative Articles

    [1]JIANG Haowen, WEI Rui, YANG Xiuqiong, LUO Shenglian, YU Kai. SMECTITE-SUPPORTED SULFIDE NANOSCALE ZERO VALENT IRON FOR ORGANIC POLLUTANTS DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 157-165. doi: 10.13205/j.hjgc.202401021
    [2]LI Wei, HU Haoting, LIU Ning, YE Youlin, GAO Mingjie, FENG Qing. ADSORPTION PERFORMANCE OF TC AND Cu2+ BY METAL-ORGANIC SKELETON HYBRID FOAMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 25-34. doi: 10.13205/j.hjgc.202406004
    [3]FU Jiahui, GUO Jie, LIU Airong, ZHOU Tao, ZHAO Youcai. DEVELOPMENT AND BARRIER PERFORMANCE OF A POLYVINYLPYRROLIDONE/ HYDROXYPROPYL METHYLCELLULOSE/NANOCELLULOSE TERNARY ODOR GAS BARRIER SPRAY FILM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 116-125. doi: 10.13205/j.hjgc.202412015
    [4]ZHU Qinlin, YANG Yinchuan, QIN Weiye, XU Yazhou, CHEN Jiabin, ZHOU Xuefei, ZHANG Yalei. RESEARCH PROGRESS OF METAL-ORGANIC FRAMEWORKS MEMBRANES FOR HIGH SALINITY WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 239-247. doi: 10.13205/j.hjgc.202306031
    [5]JIN Hongyi, Tang Xueping, Zhuang Mazhan, Gong Chunming, Wu Xiaohai, LI Fei, ZHOU Zhenming. PREPARATION OF PHOSPHORUS REMOVAL MATERIAL BY CALCINATION OF WATER TREATMENT PLANT SLUDGE AND RIVER SILT AND ITS PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 209-217. doi: 10.13205/j.hjgc.202308027
    [6]WU Qi, FAN Jian-wei. LANDFILL LEACHATE TREATMENT BY FENTON-LIKE PROCESS WITH Fe3O4-RGO NANO-COMPOSITE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 25-30. doi: 10.13205/j.hjgc.202205004
    [7]FENG Chao, XIONG Gaoyan, WANG Yunxia, PAN Yuan, LIU Yunqi. SYNTHESIS OF CuO-Cu1.5Mn1.5O4 COMPOSITE OXIDE BY USING A BIMETALLIC ORGANIC FRAMEWORK FOR CATALYTIC PROPANE TOTAL OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 69-77. doi: 10.13205/j.hjgc.202208009
    [8]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [9]ZHUANG Guijia, LIU Lifan, HUANG Xiao, GAO Jingsi, ZHU Jia. NITROGEN AND PHOSPHORUS REMOVAL PERFORMANCE OF AAO-BIOFILM PROCESS FOR ELECTROPLATING WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 128-133. doi: 10.13205/j.hjgc.202212017
    [10]LIU Ke-cheng, FAN Hui, GAO Yan-ning. PERFORMANCE OF AEROBIC GRANULAR SLUDGE MBR PROCESS FOR THE TREATMENT OF SUBSTATION SEWAGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 31-36. doi: 10.13205/j.hjgc.202109005
    [11]GENG Jian, YANG Pan, TANG Wan-ying. PHOSPHORUS REMOVAL BY THE IRON MODIFIED THERMALLY TREATED GRANULAR ATTAPULGITE CLAY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 114-119. doi: 10.13205/j.hjgc.202010018
    [12]ZHAO Min-juan, SHEN Yuan-yuan, GAO Tian-peng, YAN Jia-cong, YANG Ji-huan. EFFECT OF BROMINATED FLAME RETARDANT ON BIOLOGICAL NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 49-53,111. doi: 10.13205/j.hjgc.202012009
    [16]Lu Yanqin Zhu Li He Zhaoju Zhang Hua Li Xiaoxia, . PHOSPHORUS ADSORPTION FROM WASTEWATER BY IRON-OXIDE-COATED-ZEOLITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 48-52. doi: 10.13205/j.hjgc.201504011
  • Cited by

    Periodical cited type(3)

    1. 张恒,李瑶,赵聪,黄涛,彭道平,陈星. 锌铁水滑石改性赤泥对水体磷去除性能及机理. 环境工程. 2024(02): 57-65 . 本站查看
    2. 杨建安,文焱炳,林本旺. 磁性纳米复合纤维材料的制备及对甲基橙染料的吸附动力学研究. 化工技术与开发. 2023(08): 5-10 .
    3. 侯庆喜,王凯晴,霍丹,杨秋林,吴程伟,秦建新. 金属有机骨架@纳米纤维素复合材料的制备及应用研究进展. 天津科技大学学报. 2022(06): 69-80 .

    Other cited types(2)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.6 %FULLTEXT: 11.6 %META: 86.8 %META: 86.8 %PDF: 1.6 %PDF: 1.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.9 %其他: 24.9 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %临汾: 0.5 %临汾: 0.5 %北京: 1.6 %北京: 1.6 %十堰: 0.5 %十堰: 0.5 %南通: 0.5 %南通: 0.5 %台州: 0.5 %台州: 0.5 %同奈: 1.6 %同奈: 1.6 %嘉兴: 0.5 %嘉兴: 0.5 %天津: 2.1 %天津: 2.1 %常德: 0.5 %常德: 0.5 %广州: 0.5 %广州: 0.5 %张家口: 1.1 %张家口: 1.1 %成都: 1.6 %成都: 1.6 %扬州: 3.7 %扬州: 3.7 %昆明: 0.5 %昆明: 0.5 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.1 %杭州: 1.1 %武威: 0.5 %武威: 0.5 %武汉: 0.5 %武汉: 0.5 %江门: 0.5 %江门: 0.5 %沈阳: 1.1 %沈阳: 1.1 %济源: 1.1 %济源: 1.1 %温州: 1.6 %温州: 1.6 %湖州: 1.1 %湖州: 1.1 %漯河: 4.2 %漯河: 4.2 %焦作: 0.5 %焦作: 0.5 %石家庄: 0.5 %石家庄: 0.5 %芒廷维尤: 17.5 %芒廷维尤: 17.5 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 1.1 %苏州: 1.1 %衢州: 0.5 %衢州: 0.5 %西宁: 13.8 %西宁: 13.8 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.8 %运城: 4.8 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.6 %郑州: 1.6 %重庆: 0.5 %重庆: 0.5 %长沙: 1.1 %长沙: 1.1 %长治: 0.5 %长治: 0.5 %其他[]上海临汾北京十堰南通台州同奈嘉兴天津常德广州张家口成都扬州昆明晋城朝阳杭州武威武汉江门沈阳济源温州湖州漯河焦作石家庄芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (163) PDF downloads(3) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return