Citation: | ZHANG Rong, ZHANG Fei-long, MA Zi-zhen, ZHOU Chao, LI Zhi-qiang, XU Fu-yuan, JIANG Lin-hua. PILOT SCALE STUDY OF EMISSION REDUCTION OF ZINC ELECTROLYTIC PARTICULATE MATTERS BY ULTRASONIC TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 125-130. doi: 10.13205/j.hjgc.202108017 |
[1] |
LUO J,DUAN N,XU F Y,et al.System-level analysis of the generation and distribution for Pb,Cu,and Ag in the process network of zinc hydrometallurgy:implications for sustainability[J].Journal of Cleaner Production,2019,234:755-766.
|
[2] |
SHAKARJI R A,HE Y H,GREGORY S.The sizing of oxygen bubbles in copper electrowinning[J].Hydrometallurgy,2011,109(1/2):168-174.
|
[3] |
MCGINNITY J J,NICOL M J.Sulfuric acid mist:generation,suppression,health aspects,and analysis[J].Mineral Processing and Extractive Metallurgy Review,2013,35:149-192.
|
[4] |
MA Z Z,DUAN L,JIANG J K,et al.Characteristics and threats of particulate matter from zinc electrolysis manufacturing facilities[J].Journal of Cleaner Production,2020,259:120874.
|
[5] |
SHAKARJI R A,HE Y H,GREGORY S.Performance evaluation of acid mist reduction techniques in copper electrowinning[J].Hydrometallurgy,2013,131/132:76-80.
|
[6] |
SHAKARJI R A,HE Y H,GREGORY S.Acid mist and bubble size correlation in copper electrowinning[J].Hydrometallurgy,2012,113/114:39-41.
|
[7] |
REUTER F,LESNIK S,AYAZ-BUSTAMI K,et al.Bubble size measurements in different acoustic cavitation structures:filaments,clusters,and the acoustically cavitated jet[J].Ultrasonics Sonochemistry,2019,55:383-394.
|
[8] |
HE H P,CAO J L,DUAN N.Ultrasound and mechanical activation cleaner promote lattice manganese extraction:a combined experimental and modeling study[J].Journal of Cleaner Production,2017,143:231-237.
|
[9] |
YASUDA K,MATSUSHIMA H,ASAKURA Y.Generation and reduction of bulk nanobubbles by ultrasonic irradiation[J].Chemical Engineering Science,2018,195:455-461.
|
[10] |
CHUAH L F,KLEMES J J,YUSUP S,et al.A review of cleaner intensification technologies in biodiesel production[J].Journal of Cleaner Production,2017,146(10):181-193.
|
[11] |
MASON T J,LORIMER J P,SALEEM S,et al.Controlling emissions from electroplating by the application of ultrasound[J].Environmental Science & Technology,2001,35(16):3375-3382.
|
[12] |
MA Z Z,JIANG J K,DUAN L,et al.Ultrasonication to reduce particulate matter generated from bursting bubbles:a case study on zinc electrolysis[J].Journal of Cleaner Production,2020,272:122697.
|
[13] |
张晨牧.湿法炼锌重金属阳极泥的形成及影响机制研究[D].北京:北京理工大学.2018.
|
[14] |
WU W C,CHIBA A,NAKANISHI K.Effect of deposition in an ultrasonic field on the corrosion of electrode posited copper coatings[J].Journal of Materials Science Letters,1993,12(11):794-796.
|
[15] |
YEO S H,CHOO J H,SIM K H A.On the effects of ultrasonic vibrations on localized electrochemical deposition[J].Journal of Micromechanics & Microengineering,2002,12(3):271.
|
[16] |
ZHANG C M,JIANG L H,XU F Y,et al.New insight into cleaner control of heavy metal anode slime from aqueous sulfate electrolytes containing Mn(Ⅱ):preliminary characterization and mechanism analysis[J].Journal of Cleaner Production,2017,177(10):276-283.
|
[17] |
JAIMES R,LARTUNDO-ROJAS,et al.Characterization of anodic deposits formed on Pb-Ag electrodes during electrolysis in mimic zinc electrowinning solutions with different concentrations of Mn(Ⅱ)[J].Hydrometallurgy,2015(5):119.
|
[18] |
CHENG C Y,URBANI M D,MIOVSKI P,et al.Evaluation of saponins as acid mist suppressants in zinc electrowinning[J].Hydrometallurgy,2004,73(1/2):133-145.
|
[1] | WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009 |
[2] | HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008 |
[3] | NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014 |
[4] | WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009 |
[5] | MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014 |
[6] | LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041 |
[7] | CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006 |
[8] | XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022 |
[9] | DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004 |
[10] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[11] | CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032 |
[12] | WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017 |
[13] | WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017 |
[14] | ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020 |
[15] | DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004 |
[16] | LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002 |
[17] | HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033 |
[18] | CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007 |
[19] | YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008 |
[20] | Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035 |
1. | 吴泉泉,孙泽文,钟乙琪,吴庆,林子捷,高康泰,李建龙,黄虹,马志飞,吴代赦. 异形除尘滤芯对撞脉冲喷吹清灰性能研究. 环境工程. 2024(03): 108-114 . ![]() | |
2. | 郑清月,尹茜茜,刘东,林龙沅. 上部开口诱导引流装置对卧式长滤筒清灰性能的影响. 环境工程学报. 2023(02): 580-588 . ![]() | |
3. | 唐巾洁,王璐琰,杨晓光,鄢恒飞,程怀玉,龙新平. 滤筒形状对脉冲清灰过程影响的数值模拟研究. 武汉大学学报(工学版). 2023(06): 733-740 . ![]() | |
4. | 孟冬,许学瑞,赵颖,解洪波,王飞,李建龙. 基于扩散器与文氏管的除尘滤筒脉冲喷吹清灰性能改进. 煤矿安全. 2023(06): 54-59 . ![]() | |
5. | 杨光辉,周美伊柏,林涛,黄琬岚,谢智宇,林龙沅,陈海焱. 圆周式脉冲喷吹对滤筒清灰均匀性的影响. 中国粉体技术. 2023(06): 125-133 . ![]() | |
6. | 苏正通,林子捷,李建龙,邱俊,吴泉泉,吴代赦. 文丘里喷嘴改进金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2022(01): 220-229 . ![]() | |
7. | 刘佳莹,任玲,林小嘉,郑清月,宋戊春,林龙沅. 脉冲清灰喷吹气流偏斜的优化研究. 中国安全生产科学技术. 2022(01): 195-200 . ![]() | |
8. | 薛峰,李朋,黄琬岚,胡敏,颜翠平,陈海焱,杨刚. 喷嘴型式对滤筒脉冲定阻清灰效果的影响. 中国粉体技术. 2022(05): 48-56 . ![]() | |
9. | 郗元,姜文文,代岩,王国际,闫志刚,任福良,牛凤娟. 基于CFD的锥形散射器强化清灰特性数值模拟及优化. 轻工机械. 2021(01): 98-103 . ![]() | |
10. | 陈强,林子捷,李建龙,吴代赦,邱俊. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2021(05): 1634-1644 . ![]() | |
11. | 王素洁,刘东,余洪浪,张情,胥海伦. 基于散射结构的脉冲流场与清灰压力动态特性分析. 环境工程. 2021(05): 89-95 . ![]() | |
12. | 邱俊,林子捷,李建龙,吴泉泉,吴代赦. 滤筒脉喷清灰过程中尘饼剥离对喷吹性能的影响. 环境工程. 2021(08): 113-118 . ![]() | |
13. | 艾子昂,吴泉泉,孙燕,苏正通,李建龙,吴代赦. 气流隔板改善滤筒脉喷清灰性能的数值模拟. 南昌大学学报(工科版). 2021(04): 384-391 . ![]() | |
14. | 司凯凯,陈运法,刘庆祝,熊瑞,孙广超,刘开琪. 陶瓷膜过滤器内流场及热致损毁机理模拟分析. 过程工程学报. 2020(11): 1329-1335 . ![]() |