Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHEN Ya-yu, LI Jian-long, SUN Ji-sheng, WANG Hong-da, BI Shi-jun. RESEARCH ON THE DAMAGE RECOGNIZING METHOD OF IMPERVIOUS LAYER OF LANDFILL BASED ON MACHINE VISION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 136-140,149. doi: 10.13205/j.hjgc.202108019
Citation: CHEN Ya-yu, LI Jian-long, SUN Ji-sheng, WANG Hong-da, BI Shi-jun. RESEARCH ON THE DAMAGE RECOGNIZING METHOD OF IMPERVIOUS LAYER OF LANDFILL BASED ON MACHINE VISION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 136-140,149. doi: 10.13205/j.hjgc.202108019

RESEARCH ON THE DAMAGE RECOGNIZING METHOD OF IMPERVIOUS LAYER OF LANDFILL BASED ON MACHINE VISION

doi: 10.13205/j.hjgc.202108019
  • Received Date: 2020-11-14
    Available Online: 2022-01-18
  • The high-density polyethylene (HDPE) film of the anti-seepage layer of the landfill is easily damaged during operation. The online monitoring technology is used to determine the leakage area. After the medium on the membrane removed, the loopholes need to be accurately identified to provide a visual basis for welding process. Therefore, a machine vision-based damage identification method for impermeable layer in landfill was proposed. First, perform image processing on the sample set, including image grayscale, Gaussian filter denoising, point operation enhancement, threshold segmentation, and mathematical morphology processing. Secondly, the number of connected domains, damage area, circumference, major axis, minor axis and axial ratio were extracted according to the morphological features of the image. The retention method weas used to divide the sample set into a training set and a test set, and then the extracted features were used as the input for training SVM. Finally, multiple SVMs were used for classification and recognition. Experiments showed that the overall recognition accuracy of the classifier was 98.33%, among which the accuracy of block damage recognition was 98.24%, and the stitch damage was 98.42%.
  • [1]
    吁思颖.我国固体废物处理处置产业发展现状及趋势[J].清洗世界,2019,35(11):73-74.
    [2]
    傅刚辉.HDPE膜在垃圾处理中心的施工技术[J].建筑技术,2017,48(11):1208-1210.
    [3]
    ROWE R K,YAN Y.Magnitude and significance of tensile strain in geomembrane landfill liners[J].Geotextiles and Geomembranes,2019,47(3):439-458.
    [4]
    SUN X C,XU Y,LIU Y Q,et al.Evolution of geomembrane degradation and defects in a landfill:impacts on long-term leachate leakage and groundwater quality[J].Journal of Cleaner Production,2019,224:335-345.
    [5]
    HAN Z Y,MA H N,SHI G Z,et al.A review of groundwater contamination near municipal solid waste landfill sites in China[J].Science of the Total Environment,2016,569/570:1255-1264.
    [6]
    徐亚,能昌信,刘玉强,等.基于环境风险的危险废物填埋场安全寿命周期评价[J].中国环境科学,2016,36(6):1802-1809.
    [7]
    杨帆.城市固体废物的渗滤液处理与处置研究[J].节能与环保,2020,22(7):82-83.
    [8]
    杨坪,姜涛,李志成,等.填埋场防渗处理及渗漏检测方法研究进展[J].环境工程,2017,35(11):129-132

    ,142.
    [9]
    陈亚宇,杨家良,孙焕奕,等.固体废弃物填埋场传输线法渗漏检测定位研究[J].环境工程,2018,36(6):128-133

    ,154.
    [10]
    PANDEY L M S,SANJAY K S.An insight into waste management in Australia with a focus on landfill technology and liner leak detection[J].Journal of Cleaner Production,2019,225:1147-1154.
    [11]
    陈亚宇,能昌信,王振翀,等.基于传输线模型的垃圾填埋场渗漏定位方法探讨[J].煤炭工程,2012(3):105-107.
    [12]
    杨荣,王明伟,刘思铭.基于图像处理算法的目标识别、定位与跟踪系统设计与实现[J].物联网技术,2020,10(9):75-79.
    [13]
    王燕妮,贺莉.基于多分类SVM的石榴叶片病害检测方法[J].计算机测量与控制,2020,28(9):191-195.
    [14]
    梁璠,赵冬青,储成群,等.自适应灰度多段线性变换的FPGA实现[J].电子设计工程,2020,28(2):134-138.
    [15]
    崔欣,张鹏,赵静,等.基于机器视觉的玉米种粒破损识别方法研究[J].农机化研究,2019,41(2):28-33

    ,84.
    [16]
    DAS K,BEHERA R N.A survey on machine learning:concept,algorithms and applications[J].International Journal of Innovative Research in Computer and Communication Engineering,2017,5(2):1301-1309.
    [17]
    WANG S,XU J F,WANG F Z,et al.Identification and detection of surface defects of outer package printed matter based on machine vision[J].Journal of Korea Technical Association of the Pulp and Paper Industry,2020,52(2):3-11.
    [18]
    BAO G J,JIA M M,XUN Y,et al.Cracked egg recognition based on machine vision[J].Computers and Electronics in Agriculture,2019,158(3):159-166.
    [19]
    YANG N,QIAN Y,ZHANG R B,et al.Rapid detection of rice disease using microscopy image identification based on the synergistic judgment of texture and shape features and decision tree-confusion matrix method[J].Journal of the Science of Food and Agriculture,2019,99(14):6589-6600.
    [20]
    HABIB M T,MAINMDER A,MORIUM A,et al.Machine vision based papaya disease recognition[J].Journal of King Saud University-Computer and Information Sciences,2020,32(3):300-309.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
    [4]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [5]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [6]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [7]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [8]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [9]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [12]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [13]WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017
    [14]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [15]DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
    [16]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [17]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [18]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [19]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [20]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
  • Cited by

    Periodical cited type(14)

    1. 吴泉泉,孙泽文,钟乙琪,吴庆,林子捷,高康泰,李建龙,黄虹,马志飞,吴代赦. 异形除尘滤芯对撞脉冲喷吹清灰性能研究. 环境工程. 2024(03): 108-114 . 本站查看
    2. 郑清月,尹茜茜,刘东,林龙沅. 上部开口诱导引流装置对卧式长滤筒清灰性能的影响. 环境工程学报. 2023(02): 580-588 .
    3. 唐巾洁,王璐琰,杨晓光,鄢恒飞,程怀玉,龙新平. 滤筒形状对脉冲清灰过程影响的数值模拟研究. 武汉大学学报(工学版). 2023(06): 733-740 .
    4. 孟冬,许学瑞,赵颖,解洪波,王飞,李建龙. 基于扩散器与文氏管的除尘滤筒脉冲喷吹清灰性能改进. 煤矿安全. 2023(06): 54-59 .
    5. 杨光辉,周美伊柏,林涛,黄琬岚,谢智宇,林龙沅,陈海焱. 圆周式脉冲喷吹对滤筒清灰均匀性的影响. 中国粉体技术. 2023(06): 125-133 .
    6. 苏正通,林子捷,李建龙,邱俊,吴泉泉,吴代赦. 文丘里喷嘴改进金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2022(01): 220-229 .
    7. 刘佳莹,任玲,林小嘉,郑清月,宋戊春,林龙沅. 脉冲清灰喷吹气流偏斜的优化研究. 中国安全生产科学技术. 2022(01): 195-200 .
    8. 薛峰,李朋,黄琬岚,胡敏,颜翠平,陈海焱,杨刚. 喷嘴型式对滤筒脉冲定阻清灰效果的影响. 中国粉体技术. 2022(05): 48-56 .
    9. 郗元,姜文文,代岩,王国际,闫志刚,任福良,牛凤娟. 基于CFD的锥形散射器强化清灰特性数值模拟及优化. 轻工机械. 2021(01): 98-103 .
    10. 陈强,林子捷,李建龙,吴代赦,邱俊. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2021(05): 1634-1644 .
    11. 王素洁,刘东,余洪浪,张情,胥海伦. 基于散射结构的脉冲流场与清灰压力动态特性分析. 环境工程. 2021(05): 89-95 . 本站查看
    12. 邱俊,林子捷,李建龙,吴泉泉,吴代赦. 滤筒脉喷清灰过程中尘饼剥离对喷吹性能的影响. 环境工程. 2021(08): 113-118 . 本站查看
    13. 艾子昂,吴泉泉,孙燕,苏正通,李建龙,吴代赦. 气流隔板改善滤筒脉喷清灰性能的数值模拟. 南昌大学学报(工科版). 2021(04): 384-391 .
    14. 司凯凯,陈运法,刘庆祝,熊瑞,孙广超,刘开琪. 陶瓷膜过滤器内流场及热致损毁机理模拟分析. 过程工程学报. 2020(11): 1329-1335 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 83.1 %META: 83.1 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.6 %其他: 14.6 %其他: 1.0 %其他: 1.0 %上海: 2.3 %上海: 2.3 %东京都: 0.2 %东京都: 0.2 %东营: 0.2 %东营: 0.2 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %北京: 6.8 %北京: 6.8 %南京: 5.6 %南京: 5.6 %南昌: 0.7 %南昌: 0.7 %台北: 1.4 %台北: 1.4 %台州: 0.5 %台州: 0.5 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %宜昌: 0.5 %宜昌: 0.5 %宿州: 0.2 %宿州: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %广安: 0.2 %广安: 0.2 %广州: 3.0 %广州: 3.0 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.9 %张家口: 1.9 %惠州: 0.2 %惠州: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.3 %杭州: 3.3 %榆林: 0.2 %榆林: 0.2 %武威: 0.2 %武威: 0.2 %武汉: 1.7 %武汉: 1.7 %比勒费尔德: 0.2 %比勒费尔德: 0.2 %济南: 1.4 %济南: 1.4 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %湛江: 0.2 %湛江: 0.2 %漯河: 0.3 %漯河: 0.3 %漳州: 0.5 %漳州: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.0 %芝加哥: 1.0 %衢州: 0.3 %衢州: 0.3 %西宁: 4.2 %西宁: 4.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 2.1 %运城: 2.1 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.7 %郑州: 1.7 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.2 %铜陵: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.2 %长治: 0.2 %青岛: 1.2 %青岛: 1.2 %黄冈: 0.3 %黄冈: 0.3 %黄石: 0.5 %黄石: 0.5 %其他其他上海东京都东营中山临汾北京南京南昌台北台州合肥呼和浩特哈尔滨嘉兴太原威海宜昌宿州常州常德广安广州廊坊张家口惠州成都扬州无锡昆明晋城朝阳杭州榆林武威武汉比勒费尔德济南济源淄博深圳温州湖州湛江漯河漳州石家庄福州舟山芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆铜陵长沙长治青岛黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (148) PDF downloads(8) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return