Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
DING Jian-ning, GONG Hui, WANG Shun-yu, CUI Rong-rong, XU En-hui, XUE Yong-gang, DAI Xiao-hui, GU Guo-wei. RESEARCH REVIEW ON APPLICATION OF HYDROCYCLONE IN WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 1-6. doi: 10.13205/j.hjgc.202108001
Citation: WU Fan, JIANG Hao, LI Ye-qing. ADVANCEMENTS IN PRODUCING MEDIUM CHAIN CARBOXYLIC ACIDS VIA ANAEROBIC DIGESTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 150-155,216. doi: 10.13205/j.hjgc.202108021

ADVANCEMENTS IN PRODUCING MEDIUM CHAIN CARBOXYLIC ACIDS VIA ANAEROBIC DIGESTION

doi: 10.13205/j.hjgc.202108021
  • Received Date: 2020-08-25
    Available Online: 2022-01-18
  • The utilization of waste resources can help solve many problems including environmental pollution and resource shortage. Due to the wide application and high added value of medium chain carboxylic acids(MCCAs),the chain elongation technology has attracted wide attention in recent years. Chain elongation process could convert various biological wastes into MCCAs by the metabolism of specific microorganisms. Firstly these functional microorganisms were comprehensively introduced. Then, the mechanism (β-reverse oxidation) and reactions of chain elongation were described in details. In recent years, there were several advancements in chain elongation such as bio-electrochemical system, product extraction technology. Then the principles, practical applications and research progresses of those technologies which was beneficial to improving the yield of caproic acid, optimizing the process flow and reducing the operation costs were systematically introduced. Finally, the advantages, challenges and promoting approaches of mentioned methods were summarized.
  • [1]
    WU Q L,BAO X,GUO W Q,et al.Medium chain carboxylic acids production from waste biomass:current advances and perspectives[J].Biotechnology Advances,2019,37(5):599-615.
    [2]
    MARSHALL C W,LABELLE E V,MAY H D.Production of fuels and chemicals from waste by microbiomes[J].Curr Opin Biotechnol,2013,24(3):391-397.
    [3]
    AGLER M T,WRENN B A,ZINDER S H,et al.Waste to bioproduct conversion with undefined mixed cultures:the carboxylate platform[J].Trends in Biotechnology,2011,29(2):70-78.
    [4]
    王薪淯,朱晓宇,李海翔,等.乳酸碳链延长技术及其在有机废弃物资源化中的应用研究进展[J].应用与环境生物学报,2020,26(4):827-835.
    [5]
    CANDRY P,ULCAR B,PETROGNANI C,et al.Ethanol:propionate ratio drives product selectivity in odd-chain elongation with Clostridium kluyveri and mixed communities[J].Bioresource Technology,2020,313:123651.
    [6]
    KENEALY WR,CAO Y,WEIMER P J.Production of caproic acid by cocultures of ruminal cellulolytic bacteria and Clostridium kluyveri grown on cellulose and ethanol[J].Applied microbiology and biotechnology,1995,44(3/4):507-513.
    [7]
    BARKER H,KAMEN M,BORNSTEIN B.The synthesis of butyric and caproic acids from ethanol and acetic acid by Clostridium kluyveri [J].Proceedings of the National Academy of Sciences of the United States of America,1945,31(12):373.
    [8]
    ANGENENT LT,RICHTER H,BUCKEL W,et al.Chain elongation with reactor microbiomes:open-culture biotechnology to produce biochemicals[J].Environmental Science & Technology,2016,50(6):2796-2810.
    [9]
    BARKER H,TAHA S.CLOSTRIDIUM kluyverii,an organism concerned in the formation of caproic acid from ethyl alcohol[J].Journal of Bacteriology,1942,43(3):347.
    [10]
    COMA M,VILCHEZ-VARGAS R,ROUME H,et al.Product diversity linked to substrate usage in chain elongation by mixed-culture fermentation[J].Environmental Science & Technology,2016,50(12):6467-6476.
    [11]
    ROGHAIR M,STRIK DPBTB,STEINBUSCH KJJ,et al.Granular sludge formation and characterization in a chain elongation process[J].Process Biochemistry,2016,51(10):1594-1598.
    [12]
    KIM B C,JEON B S,KIM S,t al.Caproiciproducens galactitolivorans gen.nov.,sp.nov.,a bacterium capable of producing caproic acid from galactitol,isolated from a wastewater treatment plant[J].International Journal of Systematic and Evolutionary Microbiology,2015,65(12):4902-4908.
    [13]
    ZHU X,ZHOU Y,WANG Y,et al.Production of high-concentration n-caproic acid from lactate through fermentation using a newly isolated Ruminococcaceae bacterium CPB6[J].Biotechnology for Biofuels,2017,10(1):102.
    [14]
    AGLER M T,SPIRITO C M,USACK J G.Chain elongation with reactor microbiomes:upgrading dilute ethanol to medium-chain carboxylates[J].Energy & Environmental Science,2012,5(8):8189-8192.
    [15]
    TAO Y,ZHU X Y,WANG H,et al.Complete genome sequence of Ruminococcaceae bacterium CPB6:a newly isolated culture for efficient n-caproic acid production from lactate[J].Journal of Biotechnology,2017,259:91-94.
    [16]
    NELSON R,PETERSON D,KARP E,et al.Mixed carboxylic acid production by megasphaera elsdenii from glucose and lignocellulosic hydrolysate[J].Fermentation,2017,3(1):10.
    [17]
    CHOI K,JEON B S,KIM B C,et al.In situ biphasic extractive fermentation for hexanoic acid production from sucrose by Megasphaera elsdenii NCIMB 702410[J].Applied Biochemistry and Biotechnology,2013,171(5):1094-1107.
    [18]
    TARASOV A,BORZENKOV I,BELYAYEV S.Investigation of the trophic relations between anaerobic microorganisms from an underground gas repository during methanol utilization[J].Microbiology,2011,80(2):180-187.
    [19]
    WALLACE R,MCKAIN N,MCEWAN N,et al.Eubacterium pyruvativorans sp.nov.,a novel non-saccharolytic anaerobe from the rumen that ferments pyruvate and amino acids,forms caproate and utilizes acetate and propionate[J].International Journal of Systematic and Evolutionary Microbiology,2003,53(4):965-970.
    [20]
    BARKER H A,TAHA S M.Clostridium kluyverii,an organism concerned in the formation of caproic acid from ethyl alcohol[J].Journal of Bacteriology 1942,43(3):347-363.
    [21]
    JEON B S,KIM B C,UM Y,et al.Production of hexanoic acid from D-galactitol by a newly isolated Clostridium sp.BS-1[J].Applied Microbiology and Biotechnology,2010,88(5):1161-1167.
    [22]
    LANJEKAR V B,MARATHE N P,RAMANA V V,et al.Megasphaera indica sp.nov.,an obligate anaerobic bacteria isolated from human faeces[J].International Journal of Systermatic and Evolutionary Microbiology,2014,64(Pt 7):2250-2256.
    [23]
    JEON B S,KIM S,SANG B I.Megasphaera hexanoica sp.nov.,a medium-chain carboxylic acid-producing bacterium isolated from a cow rumen[J].International Journal Systermatic and Evolutionary Microbiology,2017,67(7):2114-2120.
    [24]
    GE S,USACK J G,SPIRITO C M,et al.Long-term n-caproic acid production from yeast-fermentation beer in an anaerobic bioreactor with continuous product extraction[J].Environmental Science & Technology,2015,49(13):8012-8021.
    [25]
    SCARBOROUGH M,LAWSON C,HAMILTON J,et al.Metatranscriptomic and thermodynamic insights into medium-chain fatty acid production using an anaerobic icrobiome[J].Nasysterns,2018,3(6).
    [26]
    ANDERSEN S J,CANDRY P,BASADRE T,et al.Electrolytic extraction drives volatile fatty acid chain elongation through lactic acid and replaces chemical pH control in thin stillage fermentation[J].Biotechnology for Biofuels,2015,8(1):221.
    [27]
    ROGHAIR M,HOOGSTAD T,STRIK DPBTB,et al.Controlling ethanol use in chain elongation by CO2 loading rate[J].Environmental Science & Technology,2018,52(3):1496-1505.
    [28]
    LIU Y H,HE P J,SHAO L M,et al.Significant enhancement by biochar of caproate production via chain elongation[J].Water Research,2017,119:150-159.
    [29]
    XU J J,HAO J X,GUZMAN J J L,et al.Temperature-phased conversion of acid whey waste into medium-chain carboxylic acids via lactic acid:no external e-donor[J].Joule,2018,3(2):885-888.
    [30]
    DESBOIS A P,SMITH V J.Antibacterial free fatty acids:activities,mechanisms of action and biotechnological potential[J].Applied Microbiology and Biotechnology,2010,85(6):1629-1642.
    [31]
    SPIRITO C M,RICHTER H,RABAEY K,et al.Chain elongation in anaerobic reactor microbiomes to recover resources from waste[J].Current Opinion in Biotechnology,2014,27:115-122.
    [32]
    STEINBUSCH K J,HAMELERS H V,PLUGGE C M,et al.Biological formation of caproate and caprylate from acetate:fuel and chemical production from low grade biomass[J].Energy & Environmental Science,2011,4(1):216-224.
    [33]
    DE ARAÚJO CAVALCANTE W,LEITÃO R C,GEHRING T A,et al.Anaerobic fermentation for n-caproic acid production:a review[J].Process Biochemistry,2017,54:106-119.
    [34]
    ZHU X Y,TAO Y,LIANG C,et al.The synthesis of n -caproate from lactate:a new efficient process for medium-chain carboxylates production[J].Scientific Reports,2015,5:14360.
    [35]
    CAVALCANTE W D A,LEITÃO R C,GEHRING T A,et al.Anaerobic fermentation for n-caproic acid production:a review[J].Process Biochemistry,2017,54:106-119.
    [36]
    JADHAV D A,RAY S G,GHANGREKAR M M.Third generation in bio-electrochemical system research:a systematic review on mechanisms for recovery of valuable by-products from wastewater[J].Renewable and Sustainable Energy Reviews,2017,76:1022-1031.
    [37]
    VAN EERTEN-JANSEN M C,TER HEIJNE A,GROOTSCHOLTEN T I,et al.Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures[J].ACS Sustainable Chemistry & Engineering,2013,1(5):513-518.
    [38]
    RAES S M,JOURDIN L,BUISMAN C J,et al.Continuous long-term bioelectrochemical chain elongation to butyrate[J].Chem ElectroChem,2017,4(2):386-395.
    [39]
    JABEEN G,FAROOQ R.Bio-electrochemical synthesis of commodity chemicals by autotrophic acetogens utilizing CO2 for environmental remediation[J].Journal of Biosciences,2016,41(3):367-380.
    [40]
    JOURDIN L,RAES S M T,BUISMAN C J N,et al.Critical biofilm growth throughout unmodified carbon felts allows continuous bioelectrochemical chain elongation from CO2 up to caproate at high current density[J].Frontiers in Energy Research,2018,6(7).
    [41]
    REDDY M V,ELMEKAWY A,PANT D.Bioelectrochemical synthesis of caproate through chain elongation as a complementary technology to anaerobic digestion[J].Biofuels,Bioproducts and Biorefining,2018,12(6):966-977.
    [42]
    WANG Y D,LI Y X,LI Y,et al.Extraction equilibria of monocarboxylic acids with trialkylphosphine oxide[J].Journal of Chemical & Engineering Data,2001,46(4):831-837.
    [43]
    WASEWAR K L,SHENDE D Z.Extraction of caproic acid using tri-n-butyl phosphate in benzene and toluene at 301 K[J].Journal of Chemical & Engineering Data,2010,55(9):4121-4125.
    [44]
    JEON B S,MOON C,KIM B C,et al.In situ extractive fermentation for the production of hexanoic acid from galactitol by Clostridium sp.BS-1[J].Enzyme and Microbial Technology,2013,53(3):143-151.
    [45]
    KUCEK L A,NGUYEN M,ANGENENT L T.Conversion of l-lactate into n-caproate by a continuously fed reactor microbiome[J].Water Research,2016,93:163-171.
    [46]
    XU J,GUZMAN J J,ANDERSEN S J,et al.In-line and selective phase separation of medium-chain carboxylic acids using membrane electrolysis[J].Chemical Communications,2015,51(31):6847-6850.
  • Relative Articles

    [1]YAN Dongjie, ZHANG Xiaohai, YUAN Liangyu, YU Ya. EFFECT OF WIRE ELECTRODE STRUCTURE PARAMETERS ON DUST REMOVAL PERFORMANCE OF PERFORATED PLATE ELECTROSTATIC PRECIPITATORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 61-68,146. doi: 10.13205/j.hjgc.202305009
    [2]HE Zhuorong, LI Xianying, WEI Beibei. DETERMINATION OF COD IN WATER SAMPLES BY BiVO4/rGO BASED ON PHOTOELECTROCHEMICAL DETERMINATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 205-212. doi: 10.13205/j.hjgc.202302027
    [3]MAO Yu, CHEN Zhuo, LU Yun, WU Qianyuan, WU Yinhu, HU Hongying. ADVANCES IN MICROBIAL INACTIVATION BY FERRATE AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 1-7. doi: 10.13205/j.hjgc.202204001
    [4]CHEN Xinyu, HOU Bingqian, GENG Ru, ZHOU Xiangtong, WU Zhiren, WEI Jing. A REVIEW OF MEMBRANE BIOFOULING CONTROL IN WATER TREATMENT BASED ON QUORUM SENSING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 251-259. doi: 10.13205/j.hjgc.202211033
    [5]GUO Yun, LI Zhouyan, WANG Zhiwei. RESEARCH PROGRESS OF ELECTROCHEMICAL MEMBRANE FILTRATION FOR WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 253-269. doi: 10.13205/j.hjgc.202212034
    [6]QIN Lan-lan, HUANG Hai-ou. RECENT RESEARCH ADVANCES AND FUTURE PROSPECT OF PARTICLE TRANSPORT MODELS FOR POROUS MEMBRANE FILTRATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 54-61,93. doi: 10.13205/j.hjgc.202107006
    [7]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [8]YUAN Jian, QIAN Ya-jie, XUE Gang, ZHANG Quan, LI Qian, LIU Zi-hao, LI Xian-ying. REMOVAL OF CADMIUM AND LEAD IN WATER BY MAGNETIC CARBON PREPARED FROM ACTIVATED SLUDGE WITH HYDROTHERMAL CARBONIZATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 55-62. doi: 10.13205/j.hjgc.202002007
    [9]YE Guo-jie, WANG Yi-xian, LUO Pei, YANG Xing-zhou, WEI Jing-yue, HU Yun, SERGEI Preis, WEI Chao-hai. FORMATION MECHANISM OF ACTIVE SPECIES IN ADVANCED OXIDATION TECHNOLOGIES AND ANALYSIS ON ITS TECHNICAL CHARACTERISTICS IN WATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 1-15. doi: 10.13205/j.hjgc.202002001
    [13]Chen Ting Yu Jian Wang Feng Ren Wenhui, . ANALYSIS OF THREE-PHASE INNER-CIRCULATION BIOLOGICAL FLUIDIZED BED OPERATION FACTORS BASED ON CFD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 19-23.
  • Cited by

    Periodical cited type(8)

    1. 陈嘉祺,倪康祥,马东方,阳重阳,邓根明. 旋流分离器分流比对污泥分离效能的影响. 广东化工. 2025(05): 104-106+112 .
    2. 杨小波,章衍隐,许妍霞. 水力旋流器流场特征和分级分离性能研究综述. 广东化工. 2024(03): 104-107 .
    3. 黄英豪,戴济群. 我国疏浚淤泥处置与利用研究进展. 中国水利. 2024(03): 25-28 .
    4. 武思谨. 水力旋流分离技术在餐厨垃圾除油领域的试验研究. 绿色科技. 2023(06): 191-196 .
    5. 张文华,李东来,刘秀林,张宏斌,郭建华,陈淑鑫. 中心复合设计的水力旋流器结构优化与试验研究. 机械科学与技术. 2023(07): 993-999 .
    6. 张文华,李东来,徐京明,郭建华,刘秀林. 锥形溢流管开缝水力旋流器流场特性与分离性能研究. 流体机械. 2023(08): 64-72 .
    7. 邵彦鋆,王冰,周瑜,施俊,宗政辉,刘国强,陶翔,张欣,黄凯文,王燕,王硕,李激. 污泥致密系统处理技术在污水处理厂的应用初探. 环境工程. 2023(09): 72-79 . 本站查看
    8. 杨蕊,吕超,朱宝锦,张磊,肖迎松. 往复泵作用下结构参数对旋流器流场特性影响. 机床与液压. 2022(15): 82-86 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040255075100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.0 %FULLTEXT: 8.0 %META: 90.3 %META: 90.3 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.1 %其他: 0.1 %China: 0.6 %China: 0.6 %Germany: 0.2 %Germany: 0.2 %[]: 0.2 %[]: 0.2 %上海: 5.7 %上海: 5.7 %东莞: 2.3 %东莞: 2.3 %东营: 0.4 %东营: 0.4 %临汾: 0.1 %临汾: 0.1 %九江: 0.5 %九江: 0.5 %伊犁: 0.2 %伊犁: 0.2 %佛山: 0.3 %佛山: 0.3 %佳木斯: 0.3 %佳木斯: 0.3 %保定: 0.1 %保定: 0.1 %兰州: 0.6 %兰州: 0.6 %北京: 5.9 %北京: 5.9 %南京: 1.7 %南京: 1.7 %南充: 0.4 %南充: 0.4 %南宁: 0.2 %南宁: 0.2 %南昌: 0.4 %南昌: 0.4 %南通: 0.1 %南通: 0.1 %厦门: 0.3 %厦门: 0.3 %台北: 0.1 %台北: 0.1 %台州: 0.4 %台州: 0.4 %合肥: 0.6 %合肥: 0.6 %呼和浩特: 0.4 %呼和浩特: 0.4 %和田: 0.2 %和田: 0.2 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 1.4 %嘉兴: 1.4 %固原: 0.1 %固原: 0.1 %圣彼得堡: 0.1 %圣彼得堡: 0.1 %大庆: 2.6 %大庆: 2.6 %大连: 0.2 %大连: 0.2 %天津: 1.7 %天津: 1.7 %太原: 0.3 %太原: 0.3 %威海: 0.3 %威海: 0.3 %安康: 0.7 %安康: 0.7 %安阳: 0.1 %安阳: 0.1 %宜宾: 0.4 %宜宾: 0.4 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.3 %宜春: 0.3 %宣城: 0.6 %宣城: 0.6 %宿迁: 0.1 %宿迁: 0.1 %崇左: 0.2 %崇左: 0.2 %巴音郭楞: 0.4 %巴音郭楞: 0.4 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广州: 2.3 %广州: 2.3 %廊坊: 0.1 %廊坊: 0.1 %张家口: 1.4 %张家口: 1.4 %德阳: 0.2 %德阳: 0.2 %成都: 1.7 %成都: 1.7 %扬州: 0.5 %扬州: 0.5 %无锡: 0.3 %无锡: 0.3 %日照: 0.2 %日照: 0.2 %昆明: 2.2 %昆明: 2.2 %晋城: 0.2 %晋城: 0.2 %朝阳: 0.8 %朝阳: 0.8 %杭州: 1.9 %杭州: 1.9 %松原: 0.1 %松原: 0.1 %榆林: 0.2 %榆林: 0.2 %武汉: 1.5 %武汉: 1.5 %江门: 0.1 %江门: 0.1 %沈阳: 0.6 %沈阳: 0.6 %沧州: 0.1 %沧州: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.2 %洛阳: 0.2 %济南: 0.1 %济南: 0.1 %济宁: 0.2 %济宁: 0.2 %济源: 0.2 %济源: 0.2 %海口: 0.4 %海口: 0.4 %淮北: 0.4 %淮北: 0.4 %深圳: 0.5 %深圳: 0.5 %清远: 0.1 %清远: 0.1 %温州: 0.1 %温州: 0.1 %湖州: 0.4 %湖州: 0.4 %漯河: 1.4 %漯河: 1.4 %潍坊: 0.3 %潍坊: 0.3 %濮阳: 0.2 %濮阳: 0.2 %烟台: 0.6 %烟台: 0.6 %珠海: 0.1 %珠海: 0.1 %盐城: 0.2 %盐城: 0.2 %盘锦: 0.2 %盘锦: 0.2 %眉山: 0.1 %眉山: 0.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.2 %福州: 1.2 %秦皇岛: 0.1 %秦皇岛: 0.1 %绍兴: 0.5 %绍兴: 0.5 %绥化: 0.1 %绥化: 0.1 %绵阳: 0.1 %绵阳: 0.1 %芒廷维尤: 6.3 %芒廷维尤: 6.3 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 1.2 %苏州: 1.2 %茂名: 0.1 %茂名: 0.1 %蚌埠: 0.2 %蚌埠: 0.2 %衡阳: 0.1 %衡阳: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 8.3 %西宁: 8.3 %西安: 1.0 %西安: 1.0 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.5 %赣州: 0.5 %达州: 0.1 %达州: 0.1 %运城: 0.8 %运城: 0.8 %连云港: 0.1 %连云港: 0.1 %遂宁: 0.1 %遂宁: 0.1 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.1 %邯郸: 0.1 %郑州: 1.8 %郑州: 1.8 %重庆: 0.9 %重庆: 0.9 %金昌: 0.1 %金昌: 0.1 %铁岭: 0.1 %铁岭: 0.1 %铜陵: 0.1 %铜陵: 0.1 %银川: 0.2 %银川: 0.2 %锦州: 0.1 %锦州: 0.1 %镇江: 0.1 %镇江: 0.1 %长春: 0.2 %长春: 0.2 %长沙: 1.3 %长沙: 1.3 %长治: 0.1 %长治: 0.1 %阜新: 0.1 %阜新: 0.1 %阜阳: 0.4 %阜阳: 0.4 %阳泉: 0.2 %阳泉: 0.2 %青岛: 1.7 %青岛: 1.7 %韶关: 0.1 %韶关: 0.1 %香港: 0.1 %香港: 0.1 %马鞍山: 0.1 %马鞍山: 0.1 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他ChinaGermany[]上海东莞东营临汾九江伊犁佛山佳木斯保定兰州北京南京南充南宁南昌南通厦门台北台州合肥呼和浩特和田哈尔滨嘉兴固原圣彼得堡大庆大连天津太原威海安康安阳宜宾宜昌宜春宣城宿迁崇左巴音郭楞常州常德广州廊坊张家口德阳成都扬州无锡日照昆明晋城朝阳杭州松原榆林武汉江门沈阳沧州泸州洛阳济南济宁济源海口淮北深圳清远温州湖州漯河潍坊濮阳烟台珠海盐城盘锦眉山石家庄福州秦皇岛绍兴绥化绵阳芒廷维尤芝加哥苏州茂名蚌埠衡阳衢州西宁西安贵阳赣州达州运城连云港遂宁遵义邯郸郑州重庆金昌铁岭铜陵银川锦州镇江长春长沙长治阜新阜阳阳泉青岛韶关香港马鞍山齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (484) PDF downloads(12) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return