Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIE Bing-kun, JIANG Zu-ming, ZENG Jun, JI Long-jie, LIU Peng, LI Shu-peng, HAN Jin, TIAN Qi-dong. ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 173-178,187. doi: 10.13205/j.hjgc.202108024
Citation: XIE Bing-kun, JIANG Zu-ming, ZENG Jun, JI Long-jie, LIU Peng, LI Shu-peng, HAN Jin, TIAN Qi-dong. ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 173-178,187. doi: 10.13205/j.hjgc.202108024

ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE

doi: 10.13205/j.hjgc.202108024
  • Received Date: 2020-10-11
    Available Online: 2022-01-18
  • In this paper, the in-situ electrothermal desorption remediation technology was applied to a polycyclic aromatic hydrocarbon (PAHs) contaminated site in East China. The changes of key parameters such as heating temperature, heating time and gas phase extraction density during operation were systematically analyzed, and the operating parameters such as the remediation effect, extraction gas concentration and energy consumption were also analyzed. The results showed that the in situ electrothermal desorption had a good removal effect on PAHs. After 250 days of heating, the soil temperature of the site reached above 300 ℃, and the pollutant removal rate reached more than 99.99%. The concentration of soil pollutants after remediation was lower than the requirements of the target value of remediation. The heating temperature, heating time and gas phase extraction density of soil were the key factors affecting the effect of in-situ electrothermal desorption remediation, and the construction experience of reducing the cost of remediation was put forward, which could provide references for the promotion and engineering application of high-temperature in-situ electrothermal desorption.
  • [1]
    张学良,李群,周艳,等.某退役溶剂厂有机物污染场地燃气热脱附原位修复效果试验[J].环境科学学报,2018,38(7):2868-2875.
    [2]
    冉宗信,陈靖宇,王雅婷,等.典型工业区土壤多环芳烃污染特征及影响因素[J].环境科学,2019,40(10):4594-4603.
    [3]
    沈源源,滕应,骆永明,等.几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J].土壤,2011,43(2):253-257.
    [4]
    蔡月华,张丹,姜林,等.化学预氧化耦合生物降解技术修复多环芳烃污染土壤研究进展[J].环境工程,2014,32(5):150-154.
    [5]
    CHEN Y,ZHAO R Z,XUE J,et al.Generation and distribution of PAHs in the process of medical waste incineration[J].Waste Management,2013,33(5):1165-1173.
    [6]
    朱煜.异位化学氧化技术处理多环芳烃污染土壤的工程应用研究[J].广东化工,2016,43(13):308-309.
    [7]
    付奕舒.多环芳烃污染土壤化学氧化修复及案例研究[J].绿色科技,2019(4):88-89.
    [8]
    戚惠民.异位类Fenton化学氧化在多环芳烃污染场地修复中的应用[J].环境工程学报,2018,12(11):3260-3267.
    [9]
    田垚.电阻加热耦合化学氧化对场地多环芳烃污染土壤的修复效果研究[D].太原:山西大学,2020.
    [10]
    BIACHE C,MANSUYHUAUIT L,FAURE P,et a1.Effects of thermal desorption the composition of two coking plant soil:Impact on solvent extnactable organic compounds and metal bioavailability[J].Environmental Pollution,2008,156(3):671-677.
    [11]
    陶欢,廖晓勇,阎秀兰,等.应用多属性决策分析法筛选污染场地土壤修复技术[J].环境工程学报,2017,11(8):4850-4860.
    [12]
    刘惠.污染土壤热脱附技术的应用与发展趋势[J].环境与可持续发展,2019(4):144-148.
    [13]
    康绍果,李书鹏,范云.污染地块原位加热处理技术研究现状与发展趋势[J].化工进展,2017,36(7):2621-2631.
    [14]
    U S Army Corps of Engineers Design:In Situ Thermal Remediation[R].Washington:Department of the Army,2009.
    [15]
    蒋村,孟宪荣,施维林,等.氯苯污染土壤低温原位热脱附修复[J].环境工程学报,2019,7(13):1720-1726.
    [16]
    HEGELE P R,MUMFORD K G.Ga S production and transport during bench-scale electrical resistance heating of water and trichloroethene[J].Journal of Contaminant Hydrology,2014,165:24-36.
    [17]
    HIESTER U,MULLER M,KOSCHITZKY H,et a1.In situ thermal(ISTT) for source zone remediation of soil and groundwater[J].British Medical Journal,2013,31:482-484.
    [18]
    李书鹏,焦文涛,李鸿炫.燃气热脱附技术修复有机污染场地研究与应用进展[J].环境工程学报,2019,13(9):2037-2048.
    [19]
    迟克宇,李传维,籍龙杰,等.原位电热脱附技术在某有机污染场地修复中的应用效果[J].环境工程学报,2019,13(9):2049-2059.
    [20]
    HERON G,PARKER K,GALLIGAN J,et al.Thermal treatment of eight CVOC source zones to near nondetect concenations[J].Groundwater Monitoringand Remediation,2009,29(3):56-65.
    [21]
    赵涛,马刚平,周宇,等.多环芳烃类污染土壤热脱附修复技术应用研究[J].环境工程,2017,35(11):178-181.
    [22]
    王瑛,李扬,黄启飞,等.温度和停留时间对DDT污染土壤热脱附效果的影响[J].环境工程,2012,30(1):116-120.
    [23]
    ZHAO C,MUMFORD K G,KUPPER B H.Labomtory study of nonaqueo-us phase liquid and water co-boiling during themal treatment[J].Journal of Conta-minant Hydrology,2014,164:49-58.
    [24]
    王慧玲,王峰,张学平,等.气相抽提法去除土壤中挥发性有机污染物现场试验研究[J].科学技术与工程,2015,10(15):238-242.
  • Relative Articles

    [1]WANG Shuqiao, YUAN Jingzhou, GUO Jinghan, ZHANG Dingchao, HAN Mengfei, GE Yuxuan, GENG Yaxian, WANG Xin. DESORPTION OF SOIL BENZENE SERIES CONTAMINANTS USING ELECTROMAGNETIC FIELD SIMULATED MICROWAVES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 190-198. doi: 10.13205/j.hjgc.202403024
    [2]WU Xia, SANG Kangyun, LIU Zeyu. EXPERIMENTAL STUDY ON IN-SITU CHEMICAL OXIDATION HIGH-PRESSURE ROTARY SPRAY REMEDIATION OF ORGANIC CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 124-130. doi: 10.13205/j.hjgc.202307017
    [3]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [4]XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033
    [5]WU Junji, NING Xunan. INFLUENCE OF PROPERTIES OF TEXTILE DYEING SLUDGE ON DISTRIBUTION AND DEGRADATION OF PAHs AFTER THE TREATMENT OF US-Fenton[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 106-112. doi: 10.13205/j.hjgc.202202017
    [6]CHE Kai, YU Jinxing, LIU Kecheng, YANG Peng, FAN Hui, WEI Minglei, NIU Xiangnan, HOU Haiping. COMPARATIVE STUDY OF DIFFERENT TOXICITY EVALUATION MODELS ON HEALTH RISK ASSESSMENT OF PAHS IN SOIL OF TYPICAL SUBSTATION SITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 128-134. doi: 10.13205/j.hjgc.202201019
    [7]CHEN Chunhong, XU Chenghua, YU Tian, LIU Gang, ZHANG Yaping, HONG Yamin. EX-SITU THERMAL DESORPTION BEHAVIORS OF LOW-RINGS PAHS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 78-85. doi: 10.13205/j.hjgc.202201012
    [8]HAN Han, WANG Xiao, YIN Mengqiuzi, ZHANG Qiwu, HE Xiaoman. MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 100-105,112. doi: 10.13205/j.hjgc.202202016
    [9]ZHANG Qing-yi, LIU Chang-qing, WU Chun-shan, ZHENG Yu-yi, ZHUO Gui-hua. EFFECT OF PYROLYSIS TIME ON PAHS CONTENT AND TOXICITY IN SLUDGE-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 129-135. doi: 10.13205/j.hjgc.202110018
    [10]LI Xiang, YANG Chi-hao, LIU Ye, ZHANG Min, SUN Xiao-feng, ZHOU Yu-cheng, YIN Wei-qin, WANG Sheng-sen, WANG Xiao-zhi. EFFECT OF PASSIVATORS ON Cd AVAILABILITY IN FARMLAND SOIL AND Cd UPTAKE BY DIFFERENT RICE VARIETIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 211-216. doi: 10.13205/j.hjgc.202109030
    [11]QIU Ya-qun, LI Yi-hua, PENG Pei-qin, LI Er-ping, YU Zhen-hua. EFFECT OF CHELATING AGENT ON PTERIS VITTATA FOR REMEDIATION OF ARSENIC-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 204-209,119. doi: 10.13205/j.hjgc.202103029
    [12]HOU Si-ying, DENG Yi-rong, LU Hai-jian, LV Ming-chao, SU Jia-yun, LI Qu-sheng. RESEARCH PROGRESS ON IRON ACTIVATED PERSULFATE IN SITU REMEDIATION OF ORGANIC CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 195-200,194. doi: 10.13205/j.hjgc.202104029
    [13]ZHAO Tao, ZHOU Yu, MA Gang-ping, LI Shi-qing, CAO Xue-long. EXPERIMENTAL STUDY ON RESTORATION EFFECT OF IN SITU THERMAL DESORPTION IN COKING CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 201-205. doi: 10.13205/j.hjgc.202104030
    [14]MIAO Zhou-wei. EFFECT AND PROCESS RESEARCH FOR TPH CONTAMINATED SOIL REMEIDANTION BY CHEMICAL OXIDANTION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 165-170. doi: 10.13205/j.hjgc.202005029
    [15]LUO Qing, GU Lei-yan, SHAN Yue, SUN Li-na. HEALTH RISK ASSESSMENT OF POLYCYCLIC AROMATIC HYDROCARBONS IN URBAN TOP SOIL OF SHENYANG BASED ON MONTE CARLO METHOD[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 196-201,222. doi: 10.13205/j.hjgc.202005034
    [17]Xu Yanzhe Fang Zhanqiang, . ADVANCES ON REMEDIATION OF HEAVY METAL IN THE SOIL BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 156-159. doi: 10.13205/j.hjgc.201502035
    [18]Zhu Wenyuan Song Zixin Li Shefeng Liu Gengsheng Tao Ling Xu Xinying Qin Hui, . RESEARCH ON LOGISTICS ORGANIZATION IN PROCESS OF CONTAMINATED SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 164-167. doi: 10.13205/j.hjgc.201502037
    [19]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
    [20]Xian Yuanhua, . EXPERIMENTAL STUDY ON THE PERFORMANCE OF SLAUGHTERHOUSE SLUDGE COMPOST AND ITS INFLUENCING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 109-111. doi: 10.13205/j.hjgc.201501025
  • Cited by

    Periodical cited type(12)

    1. 徐悦恒,刘洁,陈建军,吴卫红. 热脱附修复持久性有机污染物(POPs)污染土壤现状及趋势. 杭州电子科技大学学报(自然科学版). 2024(01): 75-83 .
    2. 吕卫光,陈昭良,张娟琴,张翰林,李双喜,郑宪清,张海韵,张月,白娜玲. 苯并[a]芘污染土壤修复研究进展. 土壤通报. 2024(02): 584-596 .
    3. 李玉萍,樊宝云,董康冉,万金忠,艾英钵,王保田. 热脱附修复石油烃污染土壤室内试验研究. 环境工程. 2024(04): 242-249 . 本站查看
    4. 卢焯贤. 原位热脱附土壤修复人工降温技术试验研究. 绿色科技. 2024(20): 180-184 .
    5. 杜立君,邹英杰,王金昌. 微波辅助测定土壤中重金属元素和有机污染物. 化学工程师. 2023(05): 15-20 .
    6. 姜文超. 污染场地热脱附技术的绿色低碳评价与措施研究. 环境污染与防治. 2023(08): 1189-1194 .
    7. 杨可,张戈,朱金浩,张汪洋,桑梓杰,陈思宇. 场地污染模拟与修复技术研究进展. 绿色科技. 2023(14): 148-155+161 .
    8. 范婷婷,靳德成,刘鹏,王祥,赵远超,邓绍坡,张胜田,刘泽权,万金忠. 原位热脱附能效评价方法构建及应用研究. 生态与农村环境学报. 2023(09): 1213-1220 .
    9. 金芮合,刘敏,何尔凯,李晔,黄晔,杨静,刘欣然. 场地土壤污染物归趋、风险评估和修复治理研究进展. 土壤通报. 2022(02): 492-501 .
    10. 杨顺美,焦文涛,刘峰,陈芒,王安宇,李烜桢,蒲生彦. 电阻加热修复佳乐麝香污染土壤的工艺优化. 环境工程学报. 2022(04): 1284-1293 .
    11. 籍龙杰,陈芒,张维琦,李承志,余韬,李书鹏,詹明秀,焦文涛. 原位热脱附去除土壤有机污染机理及技术研究. 能源环境保护. 2022(05): 46-52 .
    12. 古祺鹏,杨洁,刘亚男. 原位热脱附技术修复多环芳烃污染土壤的研究进展. 中国资源综合利用. 2021(11): 99-101 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.4 %FULLTEXT: 18.4 %META: 78.7 %META: 78.7 %PDF: 2.9 %PDF: 2.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.3 %其他: 14.3 %其他: 0.3 %其他: 0.3 %China: 0.3 %China: 0.3 %[]: 1.8 %[]: 1.8 %上海: 0.9 %上海: 0.9 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %北京: 1.8 %北京: 1.8 %南京: 1.5 %南京: 1.5 %南通: 0.6 %南通: 0.6 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 1.5 %大连: 1.5 %天津: 2.0 %天津: 2.0 %宣城: 0.6 %宣城: 0.6 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %张家口: 2.9 %张家口: 2.9 %成都: 0.6 %成都: 0.6 %扬州: 1.2 %扬州: 1.2 %无锡: 1.8 %无锡: 1.8 %昆明: 0.3 %昆明: 0.3 %晋城: 0.6 %晋城: 0.6 %朝阳: 0.3 %朝阳: 0.3 %杭州: 1.2 %杭州: 1.2 %武汉: 0.3 %武汉: 0.3 %沈阳: 0.3 %沈阳: 0.3 %济源: 0.3 %济源: 0.3 %漯河: 0.6 %漯河: 0.6 %芒廷维尤: 29.8 %芒廷维尤: 29.8 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.6 %苏州: 0.6 %衢州: 0.9 %衢州: 0.9 %西宁: 25.1 %西宁: 25.1 %达州: 0.3 %达州: 0.3 %运城: 2.6 %运城: 2.6 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 0.3 %郑州: 0.3 %重庆: 0.3 %重庆: 0.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.3 %长治: 0.3 %阳泉: 0.6 %阳泉: 0.6 %其他其他China[]上海东莞临汾北京南京南通嘉兴大连天津宣城常州常德张家口成都扬州无锡昆明晋城朝阳杭州武汉沈阳济源漯河芒廷维尤芝加哥苏州衢州西宁达州运城遵义邯郸郑州重庆长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (268) PDF downloads(10) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return