Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027
Citation: XIE Chao, LV Bin, WANG Si-si, WANG Pei-jun. REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 197-202,44. doi: 10.13205/j.hjgc.202108027

REVIEW ON RESOURCE AND ENVIRONMENTAL IMPACT ASSESSMENT OF PERMEABLE PAVEMENT BASED ON LIFE CYCLE THINKING

doi: 10.13205/j.hjgc.202108027
  • Received Date: 2020-11-16
    Available Online: 2022-01-18
  • As a typical sponge city infrastructure, permeable pavement has produced various environmental benefits such as urban rainwater reduction and water quality purification. However, in the process of material preparation, construction, maintenance and management, permeable pavement increased resource and energy consumption compared with the traditional pavement. It is urgent to apply the systematic analysis method of life cycle to carry out a comprehensive assessment of the resource and environmental benefits of permeable pavement. Through literature review, this study summarized the status and challenges of LCA application to permeable pavement assessment, and proposed corresponding countermeasures: incorporating the operation and maintenance stage into the boundary of the assessment system will help improve the comprehensiveness of the resource and environmental evaluation of permeable pavement; in view of the fact that the results of LCA are difficult to guide the engineering design, it was suggested to combine LCA with building information model to optimize the green design of permeable pavement; in view of the problems of life cycle environmental impact assessment methods such as the dynamic changes of permeation effect, it was recommended to introduce hydrological models into the overall assessment method. Through the improvement of the above perspective, the LCA method was expected to provide reference and optimization scheme for the whole process of policy-making, planning and design, construction and maintenance of permeable pavement, and help the construction of sponge city and the healthy development of urban ecosystem.
  • [1]
    中华人民共和国住房和城乡建设部.海绵城市建设技术指南——低影响开发雨水系统构建(试行)[M].北京:中国建筑工业出版社,2014.
    [2]
    韩煦,赵亚乾.海绵城市建设中"海绵体"的开发[J].地球科学与环境学报,2016,38(5):708-714.
    [3]
    薛小杰,贾果.海绵城市建设中透水铺装技术的发展应用[J].智能建筑与智慧城市,2018(7):107-108.
    [4]
    WANG Y,LI H,GHADIMI,et al.Initial evaluation methodology and case studies for life cycle impact of permeability of permeable pavements[J].International Journal of Transportation Science and Technology,2018,7(3):169-178.
    [5]
    朱金春.再生骨料透水性混凝土的研究与制备[D].扬州:扬州大学,2016.
    [6]
    张彬鸿,李家科,李亚娇.低影响开发(LID)透水铺装技术研究进展[J].水资源与水工程学报,2017,28(4):137-144.
    [7]
    应君,张青萍.海绵城市理念下城市透水性铺装的应用研究[J].现代城市研究,2016(7):41-46.
    [8]
    石雷,赵翎亦,于路港.基于SWMM模型的透水路面径流削减效果评估[J].净水技术,2019,38(10):51-55.
    [9]
    李美玉,张守红,王玉杰,等.透水铺装径流调控效益研究进展[J].环境科学与技术,2018,41(12):105-112

    ,130.
    [10]
    王俊岭,徐怡,魏胜,等.透水混凝土铺装各层对径流污染物的削减试验研究[J].环境工程,2016,34(10):39-43.
    [11]
    刘亚楠.海绵城市中透水铺装的应用推广研究[D].北京:北京建筑大学,2017.
    [12]
    王德蜜,姜迪,狄升贯.透水路面设计与材料应用综述[J].城市道桥与防洪,2013(9):35-38,8.
    [13]
    李俊奇,张哲,王耀堂,等.透水铺装设计与维护管理的关键问题分析[J].给水排水,2019,55(6):26-31.
    [14]
    中华人民共和国住房和城乡建设部.透水水泥混凝土路面技术规程:CJJ/T 135-2009[S].北京:中国建筑工业出版社,2009:16.
    [15]
    WINSTON R J,AL-RUBAEI A M,BLECKEN G T,et al.Maintenance measures for preservation and recovery of permeable pavement surface infiltration rate:the effects of street sweeping,vacuum cleaning,high pressure washing,and milling[J].Journal of Environmental Management,2016,169:132-144.
    [16]
    陈东平,余恒鹏,金洁,等.低影响开发(LID)透水砖铺装系统的研究进展[J].材料导报,2017,31(增刊2):423-427.
    [17]
    王兴桦,侯精明,李丙尧,等.多孔透水砖下渗衰减规律试验研究[J].给水排水,2019,55(增刊1):68-71.
    [18]
    LIN W G,PARK D G,RYU S W,et al.Development of permeability test method for porous concrete block pavement materials considering clogging[J].Construction and Building Materials,2016,118:20-26.
    [19]
    谢西,姜成,林晨彤,等.透水混凝土路面堵塞及其恢复效果研究[J].中外公路,2019,39(1):46-49.
    [20]
    KUMAR K,KOZAK J,HUNDAL L,et al.In-situ infiltration performance of different permeable pavements in a employee used parking lot:a four-year study[J].Journal of Environmental Management,2016,167:8-14.
    [21]
    姜雪,李小平,董珑丽,等.LCA在产品生命周期环境影响评价中的应用[J].中国人口·资源与环境,2014,24(增刊2):188-191.
    [22]
    郑晓云,徐金秀.基于LCA的装配式建筑全生命周期碳排放研究:以重庆市某轻钢装配式集成别墅为例[J].建筑经济,2019,40(1):107-111.
    [23]
    王玉涛,王丰川,洪静兰,等.中国生命周期评价理论与实践研究进展及对策分析[J].生态学报,2016,36(22):7179-7184.
    [24]
    王玉合,张仕廉,樊文俊.基于CMLCA的高速公路沥青路面环境影响评价[J].公路,2017,62(5):161-168.
    [25]
    马峰,秦钜泽,傅珍,等.生命周期评价(LCA)在美国公路工程中的应用[J].中外公路,2014,34(5):332-337.
    [26]
    王海燕,刘华章.混凝土透水砖的配合比设计、生产与施工[J].新型建筑材料,2007(7):27-29.
    [27]
    YUAN X L,TANG Y Z,LI Y,et al.Environmental and economic impacts assessment of concrete pavement brick and permeable brick production process:a case study in China[J].Journal of Cleaner Production,2018,171:198-208.
    [28]
    REHAN T Y.Analysis of life-cycle cost,properties,and field performance of parking lot pavements[D].Southern Illinois:Southern Illinois University at Edwardsville,2016.
    [29]
    刘洪涛,李艳芳,石时.透水性路面与普通路面的生命周期评价[J].城市问题,2017(5):52-57.
    [30]
    LIU J W,LI H,WANG Y,et al.Integrated life cycle assessment of permeable pavement:model development and case study[J].Transportation Research Part D,2020,85:102381.
    [31]
    VAZ I C M,GHISI E,THIVES L P.Life cycle energy assessment and economic feasibility of stormwater harvested from pervious pavements[J].Water Research,2020,170:115322.
    [32]
    芦琳,陈韬,付婉霞,等.LID措施生命周期评价方法探析:以雨水花园与渗透铺装+渗透管/井系统为例[J].绿色科技,2013(5):287-291.
    [33]
    BHATT A,BRADFORD A,ABBASSI B E.Cradle-to-grave life cycle assessment (LCA) of low-impact-development (LID) technologies in southern Ontario[J].Journal of Environmental Management,2019,231:98-109.
    [34]
    罗晓,叶文明.基于LCC理论的既有建筑成本管理研究[J].建筑经济,2014,35(6):118-120.
    [35]
    任国强,莫秀良.生命周期成本分析在城市水利系统中的应用[J].水利水电技术,2003(5):20-22.
    [36]
    MEI C,LIU J H,WANG H,et al.Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed[J].Science of the Total Environment,2018,639:1394-1407.
    [37]
    XU C Q,TANG T,JIA H F,et al.Benefits of coupled green and grey infrastructure systems:evidence based on analytic hierarchy process and life cycle costing[J].Resources,Conservation and Recycling,2019,151:104478.
    [38]
    WANG Z L,ZHOU S Q,WANG M,et al.Cost-benefit analysis of low-impact development at hectare scale for urban stormwater source control in response to anticipated climatic change[J].Journal of Environmental Management,2020,264:110483.
    [39]
    THUY N T,HAO N H,WENSHAN G,et al.A new model framework for sponge city implementation:emerging challenges and future developments[J].Journal of Environmental Management,2020,253:109689.
    [40]
    郑玲,张琪,杨密圆.生命周期成本与生命周期评价:集成模型与协同路径[J].会计之友,2020(9):47-50.
    [41]
    RISTIMÄKI M,SÄYNÄJOKI A,HEINONEN J,et al.Combining life cycle costing and life cycle assessment for an analysis of a new residential district energy system design[J].Energy,2013,63:168-179.
    [42]
    RÖCK M,HOLLBERG A,HABERT G,et al.LCA and BIM:visualization of environmental potentials in building construction at early design stages[J].Building and Environment,2018,140:153-161.
    [43]
    BUENO C,FABRICIO M M.Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in[J].Automation in Construction,2018,90:188-200.
    [44]
    HOLLBERG A,GENOVA G,HABERT G.Evaluation of BIM-based LCA results for building design[J].Automation in Construction,2020,109:102972.
    [45]
    高学珑,陈奕,许乃星,等.基于BIM的海绵城市规划建设运维管控关键技术研究[J].给水排水,2019,55(10):51-56.
    [46]
    SANTOS R,COSTA A A,SILVESTRE J D,et al.Informetric analysis and review of literature on the role of BIM in sustainable construction[J].Automation in Construction,2019,103:221-234.
    [47]
    李奇芫,杨向群,杨崴.基于BIM的小型节能建筑生命周期环境影响和成本分析[J].南方建筑,2017(2):45-50.
    [48]
    陈楠,徐照,李启明.结合BIM的工程项目全生命周期环境影响评价与决策分析方法研究[J].工程管理学报,2016,30(2):97-102.
    [49]
    刘秋虹.三种初雨污染控制排水系统的生命周期环境影响评价研究[D].重庆:重庆大学,2018.
    [50]
    梅超,刘家宏,王浩,等.SWMM原理解析与应用展望[J].水利水电技术,2017,48(5):33-42.
    [51]
    李朋,贺佳,吴朱昊,等.SWMM模型在海绵城市建设径流控制模拟中的应用[J].城市道桥与防洪,2019(11):69-72,80.
    [52]
    康得军,孙健,匡帅,等.暴雨洪水管理模型(SWMM)研究应用及发展趋势[J].净水技术,2019,38(3):45-50.
    [53]
    KOURTIS I M,TSIHRINTZIS V A,BALTAS E.A robust approach for comparing conventional and sustainable flood mitigation measures in urban basins[J].Journal of Environmental Management,2020,269:110822.
  • Relative Articles

    [1]WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009
    [2]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [3]NIU Jianmin, ZANG Chong, WANG Zhenghua, ZHOU Min, PAN Wenjie, LI Hongyan. ENGINEERING APPLICATION OF ENHANCED ROOM TEMPERATURE DESORPTION IN REMEDIATION OF SOIL CONTAMINATED BY CHLORINATED HYDROCARBONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 107-113. doi: 10.13205/j.hjgc.202405014
    [4]WANG Biyun, SUN Ailin, XU Xuehuang. STRATEGIES AND PROJECT CASE OF WASTEWATER TREATMENT PLANTS RENEWAL AND REFORMATION FOR THE DUAL-CARBON GOAL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 81-89. doi: 10.13205/j.hjgc.202411009
    [5]MA Yuanyuan, WU Yang, WANG Puchun, CHEN Yinguang, ZHENG Xiong. RESEARCH PROGRESS ON ANAEROBIC CO-FERMENTATION OF WASTE-ACTIVATED SLUDGE TO PRODUCE ACID UNDER THE GOAL OF LOW CARBON[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 102-109. doi: 10.13205/j.hjgc.202401014
    [6]LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041
    [7]CHEN Wenhao, YUAN Huizhou, KE Shuizhou, LIU Xiaoming. ANALYSIS OF CARBON OFFSET AND ENERGY RECOVERY POTENTIAL OF DIFFERENT FOOD WASTE RESOURCE DISPOSAL METHODS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 37-44. doi: 10.13205/j.hjgc.202307006
    [8]XIE Chengcheng, LIU Gang. ROAD MAP FOR CUSTRUCTING CARBON NEUTRAL WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 181-186. doi: 10.13205/j.hjgc.202309022
    [9]DING Yi, YIN Jian, JIANG Hongtao, XIA Ruici, WEI Danqi, LUO Xinyuan. SYSTEM DYNAMICS PREDICTION OF CARBON PEAKING IN PEARL RIVER DELTA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 22-29. doi: 10.13205/j.hjgc.202307004
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [12]WU Baimiao, ZHANG Yimei, LI Shuai, GUO Wenjin, GUO Xiaoqian, WANG Senyao, LIANG Xi, GENG Xuewen. COMPREHENSIVE IMPACT ASSESSMENT ON CARBON NEUTRALIZATION OF WASTEWATER TREATMENT PLANTS BASED ON HYBRID LCA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 130-137. doi: 10.13205/j.hjgc.202206017
    [13]WANG Mu, SONG Junjie, XIE Ronghuan, LI Weiping, LIU Guijian. EXPERIMENTAL STUDY OF H2O2 OXIDATION COUPLED WITH CHEMICAL WASHING TO REMEDY CHROMIUM-CONTAMINATED CLAYED SOIL FROM AN ELECTROPLATE FACTORY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 125-130. doi: 10.13205/j.hjgc.202208017
    [14]ZHAO Jinhui, LI Jingshun, WANG Panle, HOU Gaojie. A STUDY ON CARBON PEAKING PATHS IN HENAN, CHINA BASED ON LASSO REGRESSION-BP NEURAL NETWORK MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 151-156,164. doi: 10.13205/j.hjgc.202212020
    [15]DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004
    [16]LIU Hui, CAI Bo-feng, ZHANG Li, WANG Zhen, CHEN Yang, XIA Chu-yu, YANG Lu, DONG Jin-chi, SONG Xiao-hui. RESEARCH ON CARBON DIOXIDE ABATEMENT TECHNOLOGIES AND COST IN CHINA'S POWER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 8-14. doi: 10.13205/j.hjgc.202110002
    [17]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [18]CUI Xiu-zhen, XU Shao-dong, GAO Han-bo, WANG Jun-xia, CAI Bo-feng. REFERENCE OF URBAN AIR POLLUTANTS EMISSION PATH FOR CARBON EMISSION PEAKING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 39-43. doi: 10.13205/j.hjgc.202011007
    [19]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [20]Luo Chengcheng Zhang Huanzhen Bi Lusha Zhu Hong, . PROGRESS ON REHABILITATING OIL CONTAMINATED SOIL BY SVE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 158-162. doi: 10.13205/j.hjgc.201510035
  • Cited by

    Periodical cited type(14)

    1. 吴泉泉,孙泽文,钟乙琪,吴庆,林子捷,高康泰,李建龙,黄虹,马志飞,吴代赦. 异形除尘滤芯对撞脉冲喷吹清灰性能研究. 环境工程. 2024(03): 108-114 . 本站查看
    2. 郑清月,尹茜茜,刘东,林龙沅. 上部开口诱导引流装置对卧式长滤筒清灰性能的影响. 环境工程学报. 2023(02): 580-588 .
    3. 唐巾洁,王璐琰,杨晓光,鄢恒飞,程怀玉,龙新平. 滤筒形状对脉冲清灰过程影响的数值模拟研究. 武汉大学学报(工学版). 2023(06): 733-740 .
    4. 孟冬,许学瑞,赵颖,解洪波,王飞,李建龙. 基于扩散器与文氏管的除尘滤筒脉冲喷吹清灰性能改进. 煤矿安全. 2023(06): 54-59 .
    5. 杨光辉,周美伊柏,林涛,黄琬岚,谢智宇,林龙沅,陈海焱. 圆周式脉冲喷吹对滤筒清灰均匀性的影响. 中国粉体技术. 2023(06): 125-133 .
    6. 苏正通,林子捷,李建龙,邱俊,吴泉泉,吴代赦. 文丘里喷嘴改进金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2022(01): 220-229 .
    7. 刘佳莹,任玲,林小嘉,郑清月,宋戊春,林龙沅. 脉冲清灰喷吹气流偏斜的优化研究. 中国安全生产科学技术. 2022(01): 195-200 .
    8. 薛峰,李朋,黄琬岚,胡敏,颜翠平,陈海焱,杨刚. 喷嘴型式对滤筒脉冲定阻清灰效果的影响. 中国粉体技术. 2022(05): 48-56 .
    9. 郗元,姜文文,代岩,王国际,闫志刚,任福良,牛凤娟. 基于CFD的锥形散射器强化清灰特性数值模拟及优化. 轻工机械. 2021(01): 98-103 .
    10. 陈强,林子捷,李建龙,吴代赦,邱俊. 扩散喷嘴改善金锥滤筒脉喷清灰性能的数值模拟. 环境工程学报. 2021(05): 1634-1644 .
    11. 王素洁,刘东,余洪浪,张情,胥海伦. 基于散射结构的脉冲流场与清灰压力动态特性分析. 环境工程. 2021(05): 89-95 . 本站查看
    12. 邱俊,林子捷,李建龙,吴泉泉,吴代赦. 滤筒脉喷清灰过程中尘饼剥离对喷吹性能的影响. 环境工程. 2021(08): 113-118 . 本站查看
    13. 艾子昂,吴泉泉,孙燕,苏正通,李建龙,吴代赦. 气流隔板改善滤筒脉喷清灰性能的数值模拟. 南昌大学学报(工科版). 2021(04): 384-391 .
    14. 司凯凯,陈运法,刘庆祝,熊瑞,孙广超,刘开琪. 陶瓷膜过滤器内流场及热致损毁机理模拟分析. 过程工程学报. 2020(11): 1329-1335 .

    Other cited types(20)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.7 %FULLTEXT: 9.7 %META: 83.1 %META: 83.1 %PDF: 7.1 %PDF: 7.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 14.6 %其他: 14.6 %其他: 1.0 %其他: 1.0 %上海: 2.3 %上海: 2.3 %东京都: 0.2 %东京都: 0.2 %东营: 0.2 %东营: 0.2 %中山: 0.2 %中山: 0.2 %临汾: 0.2 %临汾: 0.2 %北京: 6.8 %北京: 6.8 %南京: 5.6 %南京: 5.6 %南昌: 0.7 %南昌: 0.7 %台北: 1.4 %台北: 1.4 %台州: 0.5 %台州: 0.5 %合肥: 1.2 %合肥: 1.2 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.3 %哈尔滨: 0.3 %嘉兴: 0.2 %嘉兴: 0.2 %太原: 0.2 %太原: 0.2 %威海: 0.2 %威海: 0.2 %宜昌: 0.5 %宜昌: 0.5 %宿州: 0.2 %宿州: 0.2 %常州: 0.2 %常州: 0.2 %常德: 0.3 %常德: 0.3 %广安: 0.2 %广安: 0.2 %广州: 3.0 %广州: 3.0 %廊坊: 0.2 %廊坊: 0.2 %张家口: 1.9 %张家口: 1.9 %惠州: 0.2 %惠州: 0.2 %成都: 0.9 %成都: 0.9 %扬州: 0.2 %扬州: 0.2 %无锡: 0.3 %无锡: 0.3 %昆明: 0.9 %昆明: 0.9 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.3 %朝阳: 0.3 %杭州: 3.3 %杭州: 3.3 %榆林: 0.2 %榆林: 0.2 %武威: 0.2 %武威: 0.2 %武汉: 1.7 %武汉: 1.7 %比勒费尔德: 0.2 %比勒费尔德: 0.2 %济南: 1.4 %济南: 1.4 %济源: 0.2 %济源: 0.2 %淄博: 0.2 %淄博: 0.2 %深圳: 0.7 %深圳: 0.7 %温州: 0.3 %温州: 0.3 %湖州: 0.9 %湖州: 0.9 %湛江: 0.2 %湛江: 0.2 %漯河: 0.3 %漯河: 0.3 %漳州: 0.5 %漳州: 0.5 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 30.1 %芒廷维尤: 30.1 %芝加哥: 1.0 %芝加哥: 1.0 %衢州: 0.3 %衢州: 0.3 %西宁: 4.2 %西宁: 4.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 2.1 %运城: 2.1 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.7 %郑州: 1.7 %重庆: 0.2 %重庆: 0.2 %铜陵: 0.2 %铜陵: 0.2 %长沙: 0.5 %长沙: 0.5 %长治: 0.2 %长治: 0.2 %青岛: 1.2 %青岛: 1.2 %黄冈: 0.3 %黄冈: 0.3 %黄石: 0.5 %黄石: 0.5 %其他其他上海东京都东营中山临汾北京南京南昌台北台州合肥呼和浩特哈尔滨嘉兴太原威海宜昌宿州常州常德广安广州廊坊张家口惠州成都扬州无锡昆明晋城朝阳杭州榆林武威武汉比勒费尔德济南济源淄博深圳温州湖州湛江漯河漳州石家庄福州舟山芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆铜陵长沙长治青岛黄冈黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (232) PDF downloads(4) Cited by(34)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return