Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Song-hua, ZHOU Jing, JIN Wen-long, TANG Ming, WU Jin. HEALTH RISK ASSESSMENT OF CENTRALIZED DRINKING WATER SOURCES IN SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 217-224. doi: 10.13205/j.hjgc.202105030
Citation: FU Kun-ming, FU Si-bo, LIU Fan-qi, QIU Fu-guo, CAO Xiu-qin. EFFECT OF DIFFERENT CARBON SOURCES ON N2O RELEASE IN DENITRIFICATION PROCESS OF A SBR REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 56-62. doi: 10.13205/j.hjgc.202109009

EFFECT OF DIFFERENT CARBON SOURCES ON N2O RELEASE IN DENITRIFICATION PROCESS OF A SBR REACTOR

doi: 10.13205/j.hjgc.202109009
  • Received Date: 2020-10-11
    Available Online: 2022-01-21
  • N2O is a potent greenhouse gas, and releases a lot in wastewater treatment. Understanding the influencing factors of N2O release in wastewater treatment can reduce N2O emissions. Four classical external organic carbon sources, such as sodium acetate, ethanol, glucose and sucrose, were used to study the N2O release process in denitrification process with SBR reactors. The results showed that under the 4 carbon source conditions, the accumulation of N2O showed a trend of first increasing, then decreasing, and finally remaining stable. The maximum accumulation of N2O were 1.59, 1.25, 5.43, 0.66 mg/L, and the maximum conversion rates were 1.61%, 1.36%, 5.44% and 0.67%, respectively. The final accumulation of N2O were 1.02, 0.67, 3.12, 0.49 mg/L, and the final conversion rates were 1.04%, 0.73%, 3.13% and 0.50%, respectively. The N2O release amount and conversion rate in descending order were glucose, sodium acetate, ethanol and sucrose. FNA inhibition, electronic competition of different denitrifying enzymes and differences in microbial community structure were factors affecting N2O release.
  • [1]
    IPCC.Climate Change 2007:the IPCC Scientific Assessment[M].Cambridge:Cambridge University Press,2007.
    [2]
    PORTMANN R W,DANIEL J S,RAVISHANKARA A R.Stratospheric ozone depletion due to nitrous oxide:influences of other gases[J].Philosophical Transactions of the Royal Society of London,2012,1593(367):1256-1264.
    [3]
    GRUBER W,VILLEZ K,KIPF M,et al.N2O emission in full-scale wastewater treatment:proposing a refined monitoring strategy[J].Science of the Total Environment,2019,699:1-24.
    [4]
    刘国华,庞毓旻,齐鲁,等.SBR工艺污水生物脱氮过程中N2O的释放特征[J].环境工程,2020,38(7):51-57.
    [5]
    孙英杰,吴昊,王亚楠.硝化反硝化过程中N2O释放影响因素[J].生态环境学报,2011,20(2):384-388.
    [6]
    毛跃建.废水处理系统中重要功能类群Thauera属种群结构与功能的研究[D].上海:上海交通大学,2009.
    [7]
    郭泓利,李鑫玮,任钦毅,等.全国典型城市污水处理厂进水水质特征分析[J].给水排水,2018,54(6):12-15.
    [8]
    付昆明,廖敏辉,王俊安,等.村镇低浓度生活污水现状及处理技术分析[J].环境工程,2019,37(4):48-51.
    [9]
    SONG M J,CHOI S,BAE W B,et al.Identification of primary effecters of N2O emissions from full-scale biological nitrogen removal systems using random forest approach[J].Water Research,2020,184:1-9.
    [10]
    ZHOU Y,LIM M,HARJONO S,et al.Nitrous oxide emission by denitrifying phosphorus removal culture using polyhydroxyalkanoates as carbon source[J].Journal of Environmental Sciences,2012,24(9):1616-1623.
    [11]
    CAO X S,QIAN D,MENG X Z.Effects of pH on nitrite accumulation during wastewater denitrification[J].Environmental Technology,2013,34(1/2/3/4):45-51.
    [12]
    巩有奎,彭永臻.温度变化对短程生物脱氮及N2O释放影响[J].水处理技术,2020,46(8):110-115.
    [13]
    付昆明,杨宗玥,刘凡奇,等.碳源种类对农村污水反硝化过程脱氮效果的影响[J].环境工程学报,2020,14(9):2331-2338.
    [14]
    国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.
    [15]
    KIMOCHI Y,INAMORI Y,MIZUOCHI M,et al.Nitrogen removal and N2O emission in a full-scale domestic wastewater treatment plant with intermittent aeration[J].Journal of Bioscience & Bioengineering,1998,86(2):202-206.
    [16]
    SHISKOWSKI D M.Nitrous oxide:a powerful greenhouse gas with a wastewater treatment connection[J].Proceedings of the Water Environment Federation,2007,2007(18):1279-1290.
    [17]
    PAN Y,NI B J,BOND P L,et al.Electron competition among nitrogen oxides reduction during methanol-utilizing denitrification in wastewater treatment[J].Water Research,2013,10(47):3273-3281.
    [18]
    ADOUANI N,LIMOUSY L,LENDORMI T,et al.N2O and NO emissions during wastewater denitrification step:influence of temperature on the biological process[J].Comptes Rendus Chimie,2015,18(1):15-22.
    [19]
    付昆明,付巢,王会芳,等.CANON工艺中N2O的释放途径及影响因素[J].中国给水排水,2018,34(2):37-41.
    [20]
    ZHAO Y,MIAO J,REN X,et al.Effect of organic carbon on the production of biofuel nitrous oxide during the denitrification process[J].Environmental Science and Technology,2018,15(2):461-470.
    [21]
    朱莹.Thauera linaloolentis 47Lol菌株nosZ基因不同拷贝的反硝化生理[D].上海:上海交通大学,2017.
    [22]
    LU H,CHANDRAN K,STENSEL D.Microbial ecology of denitrification in biological wastewater treatment[J].Water Research,2014,64(7):237-254.
    [23]
    SHEU S Y,SHIAU Y W,WEI Y T,et al.Gemmobacter lanyuensis sp.nov.,isolated from a freshwater spring[J].Systematic and Evolutionary Microbiology,2013,63(Pt 11):4039-4045.
    [24]
    KHAN S T,HIRAISHI A.Diaphorobacter nitroreducens gen.nov.,sp.nov.,a poly(3-hydroxybutyrate)-degrading denitrifying bacterium isolated from activated sludge[J].Journal of General & Applied Microbiology,2002,6(48):299-308.
    [25]
    BUCHANAN R E,GIBBONS N E.伯杰细菌鉴定手册[M].8版.北京:科学出版社,1984.
    [26]
    张阳,王秀杰,王维奇,等.一株Acinetobacter johnsonii的部分反硝化特性及动力学研究[J].中国环境科学,2019,39(10):4369-4376.
    [27]
    李相昆.反硝化除磷工艺与微生物学研究[D].哈尔滨:哈尔滨工程大学,2006.
    [28]
    汪霞.好氧反硝化菌Enterobacter sp.FL的脱氮及自聚集特性研究[D].重庆:重庆大学,2017.
    [29]
    YANG Y W,WU R T,HU J X,et al.Dominant denitrifying bacteria are important hosts of antibiotic resistance genes in pig farm anoxic-oxic wastewater treatment processes[J].Environment International,2020(143):105897.
    [30]
    鄢雨萌.河床沉积物淤积影响下河水入渗带中氧化还原分带研究[D].吉林:吉林大学,2020.
  • Relative Articles

    [1]MA Ruohan, LI Zhouyan, CAI Teng, NIU Chengxin, WANG Xueye, WANG Zhiwei. RESEARCH PROGRESS ON EMISSION AND CONTROL OF NON-CO2 GREENHOUSE GASES IN MUNICIPAL DRAINAGE NETWORKS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 1-12. doi: 10.13205/j.hjgc.202411001
    [2]CUI Tiantian, ZHOU Jiti, JIN Ruofei, LI Xin. TREATMENT OF SULFATE WASTEWATER BY SULFATE-REDUCING BACTERIA WITH RESIDUAL SLUDGE THERMAL ALKALINE-HYDROLYSATE AS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 23-31. doi: 10.13205/j.hjgc.202402003
    [3]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [4]TANG Baiyang, XUAN Gan, YANG Shiyao, LIU Weijing, XUE Zhaoxia, CAO Jiashun, LUO Jingyang, FENG Qian. REEXAMINING THE GREENHOUSE EFFECT OF SEPTIC TANK: EVIEW AND PROSPECTS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 14-21. doi: 10.13205/j.hjgc.202307003
    [5]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [6]REN Lifang, LI Xiaoqing, SUN Hongwei. CHARACTERISTICS OF DENITRIFICATION PHOSPHORUS REMOVAL AND N2O EMISSION IN AN/A/O-SBR UNDER DIFFERENT TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 107-115. doi: 10.13205/j.hjgc.202312013
    [7]FU Jiachen, WANG Jing, ZHAO Yiying, WEN Huiyan, AN Xiao, CHEN Yucheng, ZHOU Zhongbo. NITROGEN REMOVAL PERFORMANCE BY ALGAL-DRIVEN AEROBIC METHANE OXIDATION COUPLED WITH DENITRIFICATION IN A PHOTO-BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 18-25. doi: 10.13205/j.hjgc.202308003
    [8]XU Runze, CAO Jiashun, FANG Fang. RESEARCH PROGRESS ON N2O RECYCLING AND DATA-DRIVEN MODELING IN WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 107-115. doi: 10.13205/j.hjgc.202206014
    [9]WANG Qian, DENG Qiaosi, WU Wei, AI Fangyi, DU Junli, ZHANG Yuanhe, BAI Fan, LEI Mingming, QU Ruihua, GAN Yang, DU Weiwei. OPERATION DIAGNOSIS AND CARBON SOURCE OPTIMIZATION OF YONGCHUAN WASTEWATER TREATMENT PLANT USING PROCESS MODELING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 219-225. doi: 10.13205/j.hjgc.202206028
    [10]WANG Yan, LI Ji, ZHI Yao, ZHOU Yu, ZHENG Kai-kai, WANG Xiao-fei. DENITRIFICATION ENHANCEMENT EFFECT AND MICROBIAL FLORA ANALYSIS OF A NEW BIOMASS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 63-68,117. doi: 10.13205/j.hjgc.202209008
    [11]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [12]WANG Kai-le, ZHOU Ji-ti, TIAN Tian, CHEN Jiang-lin. APPLICATION OF ALKALI-HYDROLYZED RESIDUAL OF ACTIVATED SLUDGE AS A DENITRIFICATION CARBON SOURCE FOR TREATING AMMONIA WASTEWATER WITH A LOW C/N RATIO[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 31-37. doi: 10.13205/j.hjgc.202112005
    [13]ZHANG Jia-hui, GONG You-kui. START-UP OF SBR-PN PROCESS AND N2O EMISSION IN SIDE PRETREATMENT OF WASTED SLUDGE BY FREE NITROUS ACID[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 72-78. doi: 10.13205/j.hjgc.202106012
    [14]ZHANG Shuang-shuang, LI Zhi-hua, BEI Yuan, YANG Cheng-jian. SHUTTLE CHARACTERISTICS OF LNA AND HNA BACTERIA DURING DENITRIFICATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 78-84. doi: 10.13205/j.hjgc.202011013
    [15]ZHAO Wan-qing, LI Bo-lin, WANG Wei, LI Ye, WANG Heng, WANG Yue, LIANG Ya-nan. PERFORMANCE OF A GRANULAR-FLOCCULENT SLUDGE COUPLING SINGLE-STAGE AUTOTROPHIC NITROGEN REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 43-47,199. doi: 10.13205/j.hjgc.202009007
    [16]ZHOU Yuan, ZHI Li-ling, ZHENG Kai-kai, WANG Yan, LI Ji. INFLUENCING FACTORS AND OPTIMIZATION ANALYSIS OF DENITRIFICATION RATE IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 100-108. doi: 10.13205/j.hjgc.202007016
    [19]Zhang Weizheng Chen Yongchun Liu Bingjun Li Zhenzhen Tao Xianchao Shi Xianyang, . MATHEMATICAL SIMULATION OF SIMULTANEOUS DENITRIFICATION AND METHANOGENESIS WITH SODIUM ACETATE AS THE ELECTRON DONOR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 63-69. doi: 10.13205/j.hjgc.201504014
  • Cited by

    Periodical cited type(2)

    1. 侯银萍,东王涛,张安龙,王先宝,裴立影. 瓜果废弃物厌氧发酵产酸及发酵液作为反硝化外加碳源的研究. 陕西科技大学学报. 2023(06): 20-27 .
    2. 牟妍. 反硝化除磷工艺及影响因素的研究进展. 农业与技术. 2022(16): 100-103 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.7 %FULLTEXT: 14.7 %META: 82.2 %META: 82.2 %PDF: 3.1 %PDF: 3.1 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 15.4 %其他: 15.4 %China: 3.4 %China: 3.4 %Seattle: 0.3 %Seattle: 0.3 %[]: 0.3 %[]: 0.3 %东莞: 0.3 %东莞: 0.3 %临汾: 0.3 %临汾: 0.3 %伊利诺伊州: 0.3 %伊利诺伊州: 0.3 %信阳: 0.3 %信阳: 0.3 %北京: 3.4 %北京: 3.4 %十堰: 0.7 %十堰: 0.7 %南京: 1.7 %南京: 1.7 %厦门: 1.0 %厦门: 1.0 %台州: 0.7 %台州: 0.7 %嘉兴: 0.7 %嘉兴: 0.7 %宣城: 0.3 %宣城: 0.3 %常州: 0.3 %常州: 0.3 %常德: 0.3 %常德: 0.3 %广州: 0.3 %广州: 0.3 %开封: 0.3 %开封: 0.3 %张家口: 1.0 %张家口: 1.0 %惠州: 0.3 %惠州: 0.3 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %无锡: 0.7 %无锡: 0.7 %昆明: 0.3 %昆明: 0.3 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 1.0 %杭州: 1.0 %武汉: 2.1 %武汉: 2.1 %汕头: 0.7 %汕头: 0.7 %济源: 0.3 %济源: 0.3 %海口: 0.3 %海口: 0.3 %淮北: 0.7 %淮北: 0.7 %深圳: 0.7 %深圳: 0.7 %湖州: 0.7 %湖州: 0.7 %漯河: 1.0 %漯河: 1.0 %潍坊: 1.0 %潍坊: 1.0 %芒廷维尤: 16.1 %芒廷维尤: 16.1 %芝加哥: 1.7 %芝加哥: 1.7 %苏州: 0.3 %苏州: 0.3 %衢州: 1.0 %衢州: 1.0 %西宁: 26.4 %西宁: 26.4 %西安: 0.3 %西安: 0.3 %诺沃克: 1.0 %诺沃克: 1.0 %贵阳: 0.7 %贵阳: 0.7 %运城: 3.8 %运城: 3.8 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.3 %邯郸: 0.3 %郑州: 1.7 %郑州: 1.7 %重庆: 0.3 %重庆: 0.3 %长春: 0.3 %长春: 0.3 %长沙: 0.3 %长沙: 0.3 %长治: 0.3 %长治: 0.3 %阳泉: 0.3 %阳泉: 0.3 %其他ChinaSeattle[]东莞临汾伊利诺伊州信阳北京十堰南京厦门台州嘉兴宣城常州常德广州开封张家口惠州成都扬州无锡昆明晋城朝阳杭州武汉汕头济源海口淮北深圳湖州漯河潍坊芒廷维尤芝加哥苏州衢州西宁西安诺沃克贵阳运城遵义邯郸郑州重庆长春长沙长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(10) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return