Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 9
Jan.  2022
Turn off MathJax
Article Contents
YAN Rong, LEI Xin, MU Yu-jie, KONG Zhi-yuan, ZHANG Yuan-can, FU Zhi-min. CONTROL STRATEGY OF SUBSEQUENT CARBON SOURCE IN ANAMMOX-MFC SYSTEM FOR ENHANCEMENT NITROGEN REMOVAL AND POWER GENERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 76-83. doi: 10.13205/j.hjgc.202109012
Citation: YAN Rong, LEI Xin, MU Yu-jie, KONG Zhi-yuan, ZHANG Yuan-can, FU Zhi-min. CONTROL STRATEGY OF SUBSEQUENT CARBON SOURCE IN ANAMMOX-MFC SYSTEM FOR ENHANCEMENT NITROGEN REMOVAL AND POWER GENERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 76-83. doi: 10.13205/j.hjgc.202109012

CONTROL STRATEGY OF SUBSEQUENT CARBON SOURCE IN ANAMMOX-MFC SYSTEM FOR ENHANCEMENT NITROGEN REMOVAL AND POWER GENERATION

doi: 10.13205/j.hjgc.202109012
  • Received Date: 2020-07-28
    Available Online: 2022-01-21
  • This article mainly investigated the stability of anammox microbial fuel cell (ANAMMOX-MFC) high-efficiency denitrification and electricity generation operation with the addition of subsequent carbon sources, and used high-throughput sequencing and KEGG functional enzymes to predict changes in microbial community structure and functional genes characterization. The results showed that the system could run continuously and get stably for 60 days, the total nitrogen removal rate was 96% above, and the maximum output voltage of continuous operation was about 800 mV. Adding a proper concentration of sodium acetate could increase the relative abundance of the fermenting bacteria Enterococcus, denitrifying electricity-producing bacteria Pseudomonas, and Thaurea in the sludge, thereby effectively promoting electricity production. However, excessive hydrolysis and acidification will inhibit AnAOB activity. From the 68th to the 104th day, the ammonia nitrogen concentration in the effluent increased, and the total nitrogen removal rate dropped to about 90%. The total nitrogen removal rate was restored to 95% above by stopping the sodium acetate. The NH4+-N concentration in the effluent of the ANAMMOX-MFC system could be used as a "regulation signal" for the subsequent stop of the carbon source, so that the denitrification and electricity generation system could run stably and efficiently. It provides a combination of anaerobic ammonia oxidation and microbial fuel cell denitrification and electricity generation technology and has a good theoretical basis and certain engineering significance.
  • loading
  • [1]
    STROUS M,HEIJNEN J J,KUENEN J G,et al.The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J].Applied Microbiology & Biotechnology,1998,50(5):589-596.
    [2]
    MA B,XU X X,WEI Y,et al.Recent advances in controlling denitritation for achieving denitratation/anammox in mainstream wastewater treatment plants[J].Bioresource Technology,2020,299:122697.
    [3]
    LACKNER S,GILBERT E M,VLAEMINCK S E,et al.Full-scale partial nitritation/anammox experiences:an application survey[J].Water Research,2014,55:292-303.
    [4]
    YIN X,QIAO S,ZHOU J T.Using electric field to enhance the activity of anammox bacteria[J].Applied Microbiology and Biotechnology,2015,99(16):6921-6930.
    [5]
    LI C,REN H Q,XU M,et al.Study on anaerobic ammonium oxidation process coupled with denitrification microbial fuel cells (MFCs) and its microbial community analysis[J].Bioresource Technology,2015,175:545-552.
    [6]
    HASSAN M,WEI H W,QIU H J,et al.Power generation and pollutants removal from landfill leachate in microbial fuel cell:variation and influence of anodic microbiomes[J].Bioresource Technology,2018,247:434-442.
    [7]
    YAN H,REGAN J M.Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas[J].Biotechnology & Bioengineering,2013,110(3):785-791.
    [8]
    张吉强.微生物燃料电池同步脱氮产电性能及机理研究[D].杭州:浙江大学,2014.
    [9]
    谢作甫.MFC脱氮产电性能及电导率研究[D].杭州:浙江大学,2014.
    [10]
    许明熠,周少奇,刘泽珺,等.耦合厌氧氨氧化反应的高氮负荷型双室MFC性能研究[J].环境科学学报,2017,37(1):154-161.
    [11]
    YANG F,REN L J,PU Y P,et al.Electricity generation from fermented primary sludge using single-chamber air-cathode microbial fuel cells[J].Bioresource Technology,2013,128:784-787.
    [12]
    XIN X D,HE J G,LI L,et al.Enzymes catalyzing pre-hydrolysis facilitated the anaerobic fermentation of waste activated sludge with acidogenic and microbiological perspectives[J].Bioresource Technology,2018,250:69-78.
    [13]
    LIU Y W,SUN J,PENG L,et al.Assessment of heterotrophic growth supported by soluble microbial products in anammox biofilm using multidimensional modeling[J].Scientific Reports,2016,6:27576.
    [14]
    TAKEKAWA M,PARK G,SODA S,et al.Simultaneous anammox and denitrification (sad) process in sequencing batch reactors[J].Bioresource Technology,2014,174:159-166.
    [15]
    YIN X,QIAO S,ZHOU J T.Effects of cycle duration of an external electrostatic field on anammox biomass activity[J].Scientific Reports,2016,6:19568.
    [16]
    孔志远.厌氧氨氧化微生物燃料电池同步脱氮产电性能及机理研究[D].呼和浩特:内蒙古大学,2019.
    [17]
    国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].中国环境科学出版社,2002.
    [18]
    FENG Y,ZHAO Y P,JIANG B,et al.Discrepant gene functional potential and cross-feedings of anammox bacteria Ca.Jettenia caeni and Ca.Brocadia sinica in response to acetate[J].Water Research,2019,165:114974.
    [19]
    KARTAL B,VAN N L,KELTJENS J T,et al.Anammox——growth physiology,cell biology,and metabolism[J].Advances in Microbial Physiology,2012,60:211-262.
    [20]
    NI S Q,NI J Y,HU D L,et al.Effect of organic matter on the performance of granular anammox process[J].Bioresource Technology,2012,110:701-705.
    [21]
    LEAL C D,PEREIRA A D,NUNES F T,et al.Anammox for nitrogen removal from anaerobically pre-treated municipal wastewater:effect of cod/n ratios on process performance and bacterial community structure[J].Bioresource Technology,2016,211:257-266.
    [22]
    ZHANG C,LI L,HU X M,et al.Effects of a pulsed electric field on nitrogen removal through the ANAMMOX process at room temperature[J].Bioresource Technology,2019,275:225-231.
    [23]
    GRAAF A V D A,BRUIJN D P,ROBERTSON A L,et al.Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor[J].Microbiology,1996,142(8):2187-2196.
    [24]
    LIU H,CHENG S,LOGAN B E.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell[J].Environmental Science & Technology,2005,39(2):658-662.
    [25]
    SHAW D R,ALI M,KATURI K P,et al.Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria[J].Nature Communications,2020,11(1):2058.
    [26]
    STAGER J L,ZHANG X Y,LOGAN B E.Addition of acetate improves stability of power generation using microbial fuel cells treating domestic wastewater[J].Bioelectrochemistry,2017,118:154-160.
    [27]
    COBLE P G,SCHULTZ C A,MOPPER K.Fluorescence contouring analysis of DOC intercalibration experiment samples:a comparison of techniques[J].Marine Chemistry,1993,41(1/2/3):173-178.
    [28]
    CHEN W,WESTERHOFF P,LEENHEER J A,et al.Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter[J].Environ Sci Technol,2003,37(24):5701-5710.
    [29]
    HUANG L P,ANGELIDAKI I.Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J].Biotechnol Bioeng,2008,100(3):413-422.
    [30]
    STROUS M,PELLETIER E,MANGENOT S,et al.Deciphering the evolution and metabolism of an anammox bacterium from a community genome[J].Nature,2006,440(7085):790-794.
    [31]
    刘怡心,李卫华,申慧彦,等.厌氧氨氧化反应过程的三维荧光光谱解析[J].环境工程学报,2015,9(10):4680-4686.
    [32]
    RABAEY K,BOON N,HÖFTE M,et al.Microbial phenazine production enhances electron transfer in biofuel cells[J].Environmental Science & Technology,2005,39(9):3401-3408.
    [33]
    YANG N,ZHAN G Q,LI D,et al.Complete nitrogen removal and electricity production in thauera-dominated air-cathode single chambered microbial fuel cell[J].Chemical Engineering Journal,2018.
    [34]
    KHATER D Z,EL-KHATIB K M,HASSAN H M.Microbial diversity structure in acetate single chamber microbial fuel cell for electricity generation[J].Journal,Genetic Engineering & Biotechnology,2017,15(1):127-137.
    [35]
    宋壮壮,吕爽,刘哲,等.厌氧氨氧化耦合反硝化工艺的启动及微生物群落变化特征[J].环境科学,2019,40(11):5057-5065.
    [36]
    NOBU M K,TAMAKI H,KUBOTA K,et al.Metagenomic characterization of candidatus defluviicoccus tetraformis strain tfo71,a tetrad-forming organism,predominant in an anaerobic-aerobic membrane bioreactor with deteriorated biological phosphorus removal[J].Environ Microbiol,2014,16(9):2739-2751.
    [37]
    KHALIL J G,GANDHI S D,PARK D K,et al.Cutibacterium acnes in spine pathology:pathophysiology,diagnosis,and management[J].J Am Acad Orthop Surg,2019,27(14):633-640.
    [38]
    GUAN F,YUAN X C,DUAN J Z,et al.Phenazine enables the anaerobic respiration of pseudomonas aeruginosa via electron transfer with a polarised graphite electrode[J].Int Biodeterior Biodegradation,2019,137:8-13.
    [39]
    CHU Z R,WANG K,LI X K,et al.Microbial characterization of aggregates within a one-stage nitritation:anammox system using high-throughput amplicon sequencing[J].Chemical Engineering Journal,2015,262:41-48.
    [40]
    FINK G,SZEWCZAK-HARRIS R,LÖWE J.Snapshot:the bacterial cytoskeleton[J].Cell,2016,166(2):522-522,1.
    [41]
    WANG W G,YAN Y,ZHAO Y H,et al.Characterization of stratified eps and their role in the initial adhesion of anammox consortia[J].Water Research,2020,169:115223.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (131) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return