Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Yu-qi, CAO Qi, XU Jun-chao, LIU Chang-qing, ZHUO Gui-hua, CHEN Jian-yong, ZHENG Yu-yi. INFLUENCE OF DIFFERENT SOURCE SUBSTRATE SYSTEMS ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 123-130. doi: 10.13205/j.hjgc.202109018
Citation: WANG Tong-wei, JIN Bao-sheng, WU Wei, GU Qin-yang, WANG De-cheng. HCl(g) REMOVAL PERFORMANCE OF K2CO3-MODIFIED CAMGAL MIXED METAL OXIDES DERIVED FROM HYDROTALCITE-LIKE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 102-109. doi: 10.13205/j.hjgc.202109015

HCl(g) REMOVAL PERFORMANCE OF K2CO3-MODIFIED CAMGAL MIXED METAL OXIDES DERIVED FROM HYDROTALCITE-LIKE

doi: 10.13205/j.hjgc.202109015
  • Received Date: 2020-12-16
    Available Online: 2022-01-21
  • In this paper, the Ca-Mg-Al hydrotalcite-like was impregnated by K2CO3, and the derived mixed metal oxide adsorbent was obtained by further calcination. The fixed-bed experimental system was used to study the HCl(g) removal performance of K2CO3 modified hydrotalcite-like adsorbent at high temperature. The effects of K2CO3 content, reaction temperature and HCl(g) concentration on the removal of HCl(g) were investigated. The adsorbents were characterized by X-ray diffraction, specific surface area and pore analysis, scanning electron microscopy and thermogravimetric analysis. The results showed that:HCl(g) removal performance of hydrotalcite-like adsorbent modified by K2CO3 was significantly improved, and the optimum K2CO3 content was 30%. When the K2CO3 content exceeded 30%, the pore of adsorbent was blocked and the adsorption capacity was decreased. In the reaction temperature range of 400~800℃, the HCl(g) adsorption capacity of the adsorbent reached the maximum value of 0.289 g/g adsorbent at 600℃. After being calcined at 500℃, the specific surface area and pore volume of the adsorbent increased, the average pore size decreased, and the adsorption capacity was enhanced. The thermal stability of the hydrotalcite-like adsorbent was improved after impregnated by K2CO3. The high-temperature HCl(g) removal performance of K2CO3 modified hydrotalcite-like adsorbent was excellent, providing research directions for finding efficient and practical high-temperature HCl(g) removal adsorbents.
  • [1]
    DALPOZZO A,ANTONIONI G,GUGLIELMI D,et al.Comparison of alternative flue gas dry treatment technologies in waste-to-energy processes[J].Waste Management,2016,51:81-90.
    [2]
    衣静,刘阳生.垃圾焚烧烟气中氯化氢产生机理及其脱除技术研究进展[J].环境工程,2012,30(5):50-54.
    [3]
    谭均军,杨国华,盛伟鹏,等.垃圾焚烧炉HCl(g)脱除技术的研究现状与展望[J].环境科学与技术,2010,33(7):98-101.
    [4]
    李雁,郭昌胜,侯嵩,等.固体废物焚烧过程中二噁英的排放和生成机理研究进展[J].环境化学,2019,38(4):746-759.
    [5]
    KULKARNI P S,CRESPO J G,AFONSO C A M.Dioxins sources and current remediation technologies-a review[J].Environment International,2008,34(1):139-153.
    [6]
    WEY M Y,CHEN J C,WU H Y,et al.Formations and controls of HCl and PAHs by different additives during waste incineration[J].Fuel,2006,85(5/6):755-763.
    [7]
    LIN G M,CHYANG C S.Removal of HCl in flue gases by calcined limestone at high temperatures[J].Energy & Fuels,2017,31(11):12417-12424.
    [8]
    CHYANG C S,HAN Y L,ZHONG Z C.Study of HCl absorption by CaO at high temperature[J].Energy & Fuels,2009,23(8):3948-3953.
    [9]
    LEUNG D W J,CHEN C P,BUFFET J C,et al.Correlations of acidity-basicity of solvent treated layered double hydroxides/oxides and their CO2 capture performance[J].Dalton Transactions,2020,49(27):9306-9311.
    [10]
    ZHOU H G,JIANG Z M,WEI S Q.A new hydrotalcite-like absorbent FeMnMg-LDH and its adsorption capacity for Pb2+ ions in water[J].Applied Clay Science,2018,153:29-37.
    [11]
    ZHANG Y,ZHOU T T,LOUIS B,et al.Environmental benign synthesis of lithium silicates and Mg-Al layered double hydroxide from vermiculite mineral for CO2 capture[J].Catalysts,2017,7(12):105.
    [12]
    CAO J,ZHONG W Q,JIN B S,et al.Treatment of hydrochloric acid in flue gas from municipal solid waste incineration with Ca-Mg-Al mixed oxides at medium-high temperatures[J].Energy & Fuels,2014,28(6):4112-4117.
    [13]
    胡春红,曹俊,金保昇.3种类水滑石在中高温条件下的脱氯性能[J].东南大学学报(自然科学版),2016,46(4

    ):782-787.
    [14]
    YANG Z Z,WEI J J,ZENG G M,et al.A review on strategies to LDH-based materials to improve adsorption capacity and photoreduction efficiency for CO2[J].Coordination Chemistry Reviews,2019,386:154-182.
    [15]
    LEE J,MIN Y,LEE K,et al.Enhancement of CO2 sorption uptake on hydrotalcite by impregnation with K2CO3[J].Langmuir,2010,26(24):18788-18797.
    [16]
    ZHU X C,CHEN C P,WANG Q,et al.Roles for K2CO3 doping on elevated temperature CO2 adsorption of potassium promoted layered double oxides[J].Chemical Engineering Journal,2019,366:181-191.
    [17]
    LI S,SHI Y X,YANG Y,et al.Elevated pressure CO2 adsorption characteristics of K-promoted hydrotalcites for pre-combustion carbon capture[J].Energy Procedia,2013,37:2224-2231.
    [18]
    WU W,WU Y F,JIN B S,et al.Synthesis,characterization,and high-temperature HCl capture capacity of different proportions of potassium fluoride-doped CaMgAl layered double hydroxides[J].ACS Omega,2019,4(19):18159-18166.
    [19]
    VANDIJK H A J,WALSPURGER S,COBDEN P D,et al.Testing of hydrotalcite-based sorbents for CO2 and H2S capture for use in sorption enhanced water gas shift[J].International Journal of Greenhouse Gas Control,2011,5(3):505-511.
    [20]
    武桐,曹阳,许崇涛,等.垃圾焚烧大气污染物排放控制综述[J].工业锅炉,2014(5):28-32.
    [21]
    IQBAL M A,FEDEL M.Effect of synthesis conditions on the controlled growth of MgAl-LDH corrosion resistance film:structure and corrosion resistance properties[J].Coatings,2019,9(1):30.
    [22]
    ZHANG X Z,SHEN J Y,MA Y N,et al.Highly efficient adsorption and recycle of phosphate from wastewater using flower-like layered double oxides and their potential as synergistic flame retardants[J].Journal of Colloid and Interface Science,2020,562:578-588.
    [23]
    LU H,LI C X,MAO W W,et al.Laboratory study of CaCO3 decomposition,influence of BOF converter slag[J].Metallurgical Research & Technology,2017,114(1):119.
  • Relative Articles

    [1]CAO Bofeng, LIU Zixin, WEI Cuiyu, TANG Yufei, SHI Yucui, JIANG Pingping. EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 175-181. doi: 10.13205/j.hjgc.202402021
    [2]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [3]TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020
    [4]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [5]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [6]LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012
    [7]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [8]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [10]Zhang Qingle Dong Jian Zhang Liqing Wang Jixiang Li Zejiao Li Rui, . ADSORPTION CHARACTERISTICS OF HEXAVALENT CHROMIUM ON POPLAR LEAF MODIFIED BY OXALATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 64-69. doi: 10.13205/j.hjgc.201505014
    [11]Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026
  • Cited by

    Periodical cited type(7)

    1. 田文娟,郭丽,杜维,郑丹. 柱后衍生-离子色谱法测定固废中的六价铬方法优化. 广州化工. 2024(20): 110-114 .
    2. 杨柳晨,王小钊,邢丹. 铬盐污染土壤六价铬标准物质不确定度评估. 福建分析测试. 2024(06): 53-59 .
    3. 吕旭,韩建. 碱消解-火焰原子吸收光谱法检测土壤中的六价铬方法改进. 山东化工. 2022(13): 89-91+97 .
    4. 褚琳琳,王静云,金晓霞,汪碧芬,孔翠羽. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬. 岩矿测试. 2022(05): 826-835 .
    5. 陈秀梅,王靖宜. 碱性微波提取-ICP/MS法测定土壤中六价铬. 环境监测管理与技术. 2022(06): 56-59 .
    6. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .
    7. 王世悦. 工作场所中六价铬和总铬火焰原子吸收法的研究. 质量安全与检验检测. 2020(05): 138-139 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 81.7 %META: 81.7 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %[]: 0.5 %[]: 0.5 %上海: 3.8 %上海: 3.8 %临汾: 0.5 %临汾: 0.5 %丽水: 0.5 %丽水: 0.5 %北京: 4.4 %北京: 4.4 %台州: 3.8 %台州: 3.8 %哈尔滨: 0.5 %哈尔滨: 0.5 %天津: 0.5 %天津: 0.5 %宣城: 1.1 %宣城: 1.1 %常德: 0.5 %常德: 0.5 %张家口: 3.8 %张家口: 3.8 %成都: 1.6 %成都: 1.6 %昆明: 0.5 %昆明: 0.5 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.2 %杭州: 2.2 %武汉: 0.5 %武汉: 0.5 %汕头: 0.5 %汕头: 0.5 %沈阳: 2.7 %沈阳: 2.7 %济源: 0.5 %济源: 0.5 %温州: 1.1 %温州: 1.1 %湖州: 2.2 %湖州: 2.2 %漯河: 1.6 %漯河: 1.6 %福州: 1.1 %福州: 1.1 %秦皇岛: 1.1 %秦皇岛: 1.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %苏州: 0.5 %苏州: 0.5 %衢州: 1.1 %衢州: 1.1 %西宁: 8.7 %西宁: 8.7 %贵阳: 0.5 %贵阳: 0.5 %运城: 6.0 %运城: 6.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %铁岭: 0.5 %铁岭: 0.5 %长沙: 1.1 %长沙: 1.1 %长治: 0.5 %长治: 0.5 %其他[]上海临汾丽水北京台州哈尔滨天津宣城常德张家口成都昆明晋城朝阳杭州武汉汕头沈阳济源温州湖州漯河福州秦皇岛芒廷维尤苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (202) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return