Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017
Citation: LI Sa, LIN Qian-guo, LIANG Xi, LEI Ming, JIANG Meng-fei, YANG Yong-zhi. TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 117-122,175. doi: 10.13205/j.hjgc.202109017

TECHNICAL AND ECONOMIC ANALYSIS OF CARBON DIOXIDE CAPTURE OF IRON AND STEEL BLAST FURNACE GAS

doi: 10.13205/j.hjgc.202109017
  • Received Date: 2020-10-20
    Available Online: 2022-01-21
  • In this study, three carbon capture scenarios were designed, namely fixed quantity raw gas scenario, fixed carbon capture amount scenario, and mixed raw gas scenario. Cases reflecting different CO2 capture rates and product purity associated with different capture technologies were further designed under each scenario. The impacts of CO2 capture on the economic benefits of calorific value variation of blast furnace gas were analyzed. When the CO2 capture rate and CO2 product purity were equal, the calorific value of CO2 per unit based on the fixed quantity raw gas scenario was higher than that under the fixed carbon capture amount scenario. When the CO2 capture rate was fixed, with the reduction of CO2 product purity, the calorific value benefits of CO2 per unit mass based on the fixed quantity raw gas scenario and the fixed carbon capture amount scenario were both higher. When the purity of CO2 product was fixed, with the reduction of CO2 capture rate, the calorific value of fixed quantity raw gas scenario increased in efficiency, while the calorific value of the fixed carbon capture amount scenario decreased in efficiency.
  • [1]
    ZHAO G,GAO X,WANG Z R,et al.A mechanism model for accurately estimating carbon emissions on a micro scale of iron-making system[J].ISIJ International,2019,59(2):381-390.
    [2]
    ARASTO A,TSUPARI E,KÄRKI J,et al.Costs and potential of carbon capture and storage at an integrated steel mill[J].Energy Procedia,2013,37:7117-7124.
    [3]
    RAMÍREZ S,ÁLVARO A,CASTEL C,et al.Utilization of blast furnace flue gas:opportunities and challenges for polymeric membrane gas separation processes[J].Journal of Membrane Science,2017,526:191-204.
    [4]
    HO M T,BUSTAMANTE A,WILEY D E.Comparison of CO2 capture economics for iron and steel mills[J].International Journal of Greenhouse Gas Control,2013,19:145-159.
    [5]
    郭玉华.高炉煤气净化提质利用技术现状及未来发展趋势[J].钢铁研究学报,2020,32(7):525-531.
    [6]
    卢维强,张俊杰,段国建,等.解决中天钢铁高炉炉壳上涨实践[J].钢铁,2020,55(2):42.
    [7]
    易正明,胡绪满,周正,等.贫煤与煤气混烧锅炉掺烧试验[J].哈尔滨理工大学学报,2020,25(3):102-108.
    [8]
    尹志强.锅炉烟气余热利用系统分析与优化对策[J].冶金管理,2020(7):208-209.
    [9]
    Anne C.CO2 a batement in the iron and steel industry[J].Energy & Fuels,2012,77(1):43.
    [10]
    刘博文,邓帅,李双俊,等.面向碳捕集系统的碳中性评价:研究框架及方法[J].环境工程,2019,37(1):192-197.
    [11]
    江文敏.化学吸收法捕集二氧化碳工艺的模拟及实验研究[D].杭州:浙江大学,2015.
    [12]
    方梦祥,狄闻韬,易宁彤,等.CO2化学吸收系统污染物排放与控制研究进展[J].洁净煤技术,2020(6):1-9.
    [13]
    LIANG Z W,FU K Y,RAPHAEL I,et al.Review on current advances,future challenges and consideration issues for post-combustion CO2 capture using amine-based absorbents[J].Chinese Journal of Chemical Engineering,2016,24(2):278-288.
    [14]
    王键,杨剑,王中原,等.全球碳捕集与封存发展现状及未来趋势[J].环境工程,2012,30(4):118-120.
    [15]
    林海周,裴爱国,方梦祥.燃煤电厂烟气二氧化碳胺法捕集工艺改进研究进展[J].化工进展,2018,37(12):4874-4886.
    [16]
    韩永嘉,王树立,张鹏宇,等.CO2分离捕集技术的现状与进展[J].天然气工业,2009,29(12):79-82.
    [17]
    徐冬,张军,翟玉春,等.变压吸附分离工业废气中二氧化碳的研究进展[J].化工进展,2010,29(1):150-156

    ,162.
    [18]
    陈旭,杜涛,李刚,等.吸附工艺在碳捕集中的应用现状.中国电机工程学报,2019,39(增刊1):155-163.
    [19]
    郭智,张新妙,章晨林,等.膜分离法分离煤气中CO2材料及应用研究进展[J].现代化工,2016,36(6):42-45

    ,47.
    [20]
    孙亚伟,谢美连,刘庆岭,等.膜法分离燃煤电厂烟气中CO2的研究现状及进展[J].化工进展,2017,36(5):1880-1889.
    [21]
    龚之宝,孙伟振,李朋洲,等.无机膜分离技术及其研究进展[J].应用化工,2019,48(8):1985-1989.
    [22]
    PARK H B,KAMCEV J,ROBESON L M,et al.Maximizing the right stuff:the trade-off between membrane permeability and selectivity[J].Science,2017,356(6343):1138-1148.
    [23]
    马光宇,李卫东,张天赋,等.高炉煤气锅炉与CCPP的发电经济性比较[J].冶金能源,2018,37(6):11-14.
    [24]
    徐志钢,樊响,周景伟,等.高炉煤气脱硫可行性工艺路线研究[J/OL].环境工程,http://kns.cnki.net/kcms/detail/11.2097.X.20191108.1429.004.html.[2020-10-19].
  • Relative Articles

    [1]LI Haicheng, CHENG Cheng, CHEN Zhenglin, YANG Lixia, LUO Shenglian. SULFIDE ION DOPING PROMOTES EFFICIENT PHOTOCATALYTIC DEGRADATION OF TOLUENE BY WO3 NANOWIRES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 201-210. doi: 10.13205/j.hjgc.202409019
    [2]CHEN Acong, WEI Tuo, QIN Zhi, CHEN Yao, XU Rui, WU Haizhen, WEI Chaohai. SHIELDING EFFECT OF ZINC SULFATE ON CYANIDE COMPLEX DURING THIOCYANIDE DETECTION FOR COKING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 134-139. doi: 10.13205/j.hjgc.202305018
    [3]ZHOU Lichang, LI Zhaoling, CHEN Lei, LIN Ya'nan, GONG Zhiwei, LIN Qingshan, MA Jie, WANG Zongping, GUO Gang. SHORT-TERM EFFECT OF THIOSULFATE ON COMPETITION BETWEEN SULFUR BACTERIA AND GLYCOGEN ACCUMULATING ORGANISMS IN SULFUR-CONTAINING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 26-32. doi: 10.13205/j.hjgc.202308004
    [4]ZHANG Kui, WANG Xuemei, LI Yuhuan, ZHANG Yu, LIU Mengjuan, JIANG Xueping, JI Hongbing. HIGH EFFICIENCY ADSORPTION OF Hg2+ BY SULFUR-MODIFIED COW MANURE BIOCHAR AND ITS MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 79-88. doi: 10.13205/j.hjgc.202204012
    [5]DONG Wan-tao, WANG Ya-jun, LI Li, ZHANG Xing. REACTION KINETICS STUDY ON H2O2 AND Na2FeO4 REMOVING TOTAL PETROLEUM HYDROCARBON FROM SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 178-184. doi: 10.13205/j.hjgc.202110025
    [6]WANG Yan, ZOU Lv-xi, MAO Lin-feng, CHEN Ya-li, LI Ji. EFFICIENCY AND MECHANISM OF UV/O3-Na2S2O8 IN TREATING ACTIVATED CARBON REGENERATION CONDENSATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 38-44. doi: 10.13205/j.hjgc.202007006
    [11]Zhang Jun, Xu Junyang, Wang Dunqiu, Yang Huiping, Wu Xiaohui. EFFECTS OF TYPES AND CONCENTRATIONS OF SULFUR SUBSTRATE ON BIOLEACHING HEAVY METALS FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 39-43. doi: 10.13205/j.hjgc.201504009
  • Cited by

    Periodical cited type(8)

    1. 郭磊,黄黎明,韦振祖,刘艇安,王靓,吴玮. 非均匀边界条件下SCR脱硝系统数值模拟及改造效果分析. 洁净煤技术. 2024(S2): 272-278 .
    2. 张起,张福祥,李盛平,景浩林,杨锐涵,董志强,杨祖旺,田桦. 660 MW燃煤机组脱硝系统优化改造. 能源与节能. 2023(02): 99-104 .
    3. 韩冰,李清方,刘海丽,于惠娟,张舒漫,王辉. 百万吨级CO_2捕集烟气集成处理塔流场模拟及优化. 石油工程建设. 2022(04): 7-11+34 .
    4. 封例忠,丛日强,刘怡,齐艳芳. 基于CFD的某330MW燃煤机组SCR脱硝系统混合器优化与验证. 环境工程. 2022(10): 156-161 . 本站查看
    5. 韦振祖,赵宁波,李明磊,刘瑞敬,谢新华,周健,卢承政. 非均匀入口条件下SCR脱硝系统流场优化改造技术研究. 锅炉技术. 2021(04): 74-80 .
    6. 陶莉,肖育军. SCR区域喷氨的NH_3分布与均匀性调整. 环境工程技术学报. 2021(04): 663-669 .
    7. 张云雷,孙仲超,梁大明,熊银伍,李艳芳. 活性焦烟气净化反应器研究进展. 洁净煤技术. 2020(04): 21-30 .
    8. 王为,朱召平,张楚城,陈牧,苏寅彪,郑晓盼. 高温除尘脱硝一体化技术开发及流场模拟研究. 洁净煤技术. 2020(04): 154-161 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.5 %FULLTEXT: 6.5 %META: 93.5 %META: 93.5 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.5 %其他: 17.5 %Bulgaria: 0.5 %Bulgaria: 0.5 %Canada: 1.4 %Canada: 1.4 %China: 1.4 %China: 1.4 %Germany: 0.5 %Germany: 0.5 %Greece: 0.5 %Greece: 0.5 %Italy: 0.5 %Italy: 0.5 %Netherlands: 0.5 %Netherlands: 0.5 %Portugal: 0.9 %Portugal: 0.9 %Saudi Arabia: 0.5 %Saudi Arabia: 0.5 %Sweden: 0.9 %Sweden: 0.9 %United States: 4.1 %United States: 4.1 %临汾: 0.5 %临汾: 0.5 %佛罗里达: 0.9 %佛罗里达: 0.9 %保定: 1.4 %保定: 1.4 %北京: 12.0 %北京: 12.0 %十堰: 0.5 %十堰: 0.5 %台州: 0.5 %台州: 0.5 %大同: 0.5 %大同: 0.5 %天津: 1.4 %天津: 1.4 %宣城: 0.5 %宣城: 0.5 %常德: 0.9 %常德: 0.9 %广州: 0.5 %广州: 0.5 %张家口: 1.8 %张家口: 1.8 %成都: 0.9 %成都: 0.9 %扬州: 0.5 %扬州: 0.5 %拉贾斯坦邦: 0.5 %拉贾斯坦邦: 0.5 %晋城: 0.9 %晋城: 0.9 %朝阳: 0.5 %朝阳: 0.5 %杭州: 0.5 %杭州: 0.5 %欧文: 0.5 %欧文: 0.5 %沈阳: 0.5 %沈阳: 0.5 %泰安: 0.5 %泰安: 0.5 %济源: 0.5 %济源: 0.5 %温州: 0.5 %温州: 0.5 %湘潭: 0.5 %湘潭: 0.5 %漯河: 1.8 %漯河: 1.8 %石家庄: 0.5 %石家庄: 0.5 %纽约: 0.5 %纽约: 0.5 %芒廷维尤: 22.1 %芒廷维尤: 22.1 %芝加哥: 3.7 %芝加哥: 3.7 %苏州: 0.9 %苏州: 0.9 %萍乡: 0.5 %萍乡: 0.5 %衢州: 0.5 %衢州: 0.5 %西宁: 5.1 %西宁: 5.1 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 3.7 %运城: 3.7 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.9 %郑州: 0.9 %重庆: 0.5 %重庆: 0.5 %铜陵: 0.5 %铜陵: 0.5 %长治: 0.5 %长治: 0.5 %其他BulgariaCanadaChinaGermanyGreeceItalyNetherlandsPortugalSaudi ArabiaSwedenUnited States临汾佛罗里达保定北京十堰台州大同天津宣城常德广州张家口成都扬州拉贾斯坦邦晋城朝阳杭州欧文沈阳泰安济源温州湘潭漯河石家庄纽约芒廷维尤芝加哥苏州萍乡衢州西宁西安贵阳运城遵义邯郸郑州重庆铜陵长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (308) PDF downloads(8) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return