Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Xing-run, LI Lei, YANG Xiang-hua, TIAN Yong-qiang. PROGRESS IN REMEDIATION OF CHROMIUM-CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 1-8,23. doi: 10.13205/j.hjgc.202006001
Citation: ZHANG Shao-kang, GONG Xiao-feng, LIN Yuan, WU Li, XIONG Jie-qian, WU Jing-lin. REMEDIATION OF Cd CONTAMINATED SOIL BY ARTIFICIAL STRUVITE COMBINED WITH RYEGRASS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 193-198. doi: 10.13205/j.hjgc.202109027

REMEDIATION OF Cd CONTAMINATED SOIL BY ARTIFICIAL STRUVITE COMBINED WITH RYEGRASS

doi: 10.13205/j.hjgc.202109027
  • Received Date: 2020-07-10
    Available Online: 2022-01-21
  • With magnesium chloride as the additive, the artificial struvite was prepared when the ratio of n(Mg2+):n(NH4+):n(PO43-) in N and P wastewater was adjusted to be 1.15:1:1, pH was between 8.5 and 9, and the reaction time was 30 min. The product was characterized by SEM, FT-IR and XRD, indicating that struvite was the main content. Artificial struvite combined with ryegrass was used to remediation soil contaminated by Cd. Studies showed that artificial struvite could effectively improve the soil pH, available phosphorus content and enzyme activity to increase soil environmental quality. At the same time, it could reduce the exchangable Cd content in the soil and increase the GSH content in the ryegrass leaves to reduce the MDA content in the leaves and reduce the degree of membrane lipid peroxidation. Compared with the control, the biomass of ryegrass was increased by 81.7%~148.5%, and the total extraction of Cd was increased by 25.41%~44.27%. The remediation efficiency was the best when the additive dosage was 5%.
  • [1]
    中华人民共和国环境保护部.2015中国环境状况公报[R].2015.
    [2]
    YE Z L,SHEN Y,YE X,et al.Phosphorus recovery from wastewater by struvite crystallization:property of aggregates[J].Journal of Environmental Sciences,2014,26(5):991-1000.
    [3]
    吕媛,项显超,李继云,等.海水和苦卤水作为廉价镁源对尿液废水中磷去除的影响[J].环境工程,2019,37(10):105-109.
    [4]
    郑冰玉,张树军,杨岸明.磷酸铵镁结晶法用于污水处理流程中磷元素回收进展[J].环境工程,2019,37(6):90-95.
    [5]
    RAHMAN M M,LIU Y H,KWAG J H,et al.Recovery of struvite from animal wastewater and its nutrient leaching loss in soil[J].Journal of Hazardous Materials,2011,186(23):2026-2030.
    [6]
    PONCER R G.Evaluation of stmvite as a fertilizer:a comparison with traditional P sources[J].Agrochimica,2007,51:301-308.
    [7]
    WANG H,WANG X J,WANG W S,et al.Modeling and optimization of struvite recovery from wastewater and reusing for heavy metals immobilization in contaminated soil[J].Journal of Chemical Technology & Biotechnology,2016,91(12):243-246.
    [8]
    ZHANG Z H,CHEN J,XIA P,et al.Stabilization of Pb in contaminated soil using zeolite-struvite composites[J].Journal of Agro-Environment Science,2016,35(11):2101-2106.
    [9]
    张志昊,陈杰,夏鹏,等.沸石-鸟粪石复合材料对土壤中铅的稳定化作用[J].农业环境科学学报,2016,35(11):2101-2106.
    [10]
    成雪君,王学江,陈杰,等.磷回收产物对土壤中铜的原位修复作用[J].环境工程学报,2017,11(8):4824-4830.
    [11]
    ZHANG Y P,LI F Z,XU W W,et al.Enhanced phytoextraction for co-contaminated soil with Cd and Pb by Ryegrass (Lolium perenne L.)[J].Bulletin of Environmental Contamination and Toxicology,2019,103(1):147-154.
    [12]
    苏双青,传秀云,马鸿文.鸟粪石结晶法回收氮磷及其用作缓释生态肥研究[J].无机盐工业,2016,48(12):58-63.
    [13]
    陈莉薇,陈海英,武君,等.利用Tessier五步法和改进BCR法分析铜尾矿中Cu、Pb、Zn赋存形态的对比研究[J].安全与环境学报,2020,20(2):735-740.
    [14]
    张博凯,郝鲜俊,高文俊,等.不同有机肥及用量对矿区复垦土壤有效磷含量及供磷特性的影响[J].水土保持学报,2021,35(2):271-278.
    [15]
    苏荣,王晓飞,洪欣,等.微波消解-电感耦合等离子体质谱法测定土壤中10种重金属元素[J].现代化工,2015,35(1):175-177.
    [16]
    豆昕桐,王英杰,王华忠,等.耐盐和盐敏感型小麦品种对NaCl胁迫的生理响应及耐盐性差异[J].生态学报,2021,41(12):4976-4992.
    [17]
    JIANG M Y,ZHANG J H.Effect of abscisic acid on active oxygen species,antioxidative defence system and oxidative damage in leaves of maize seedlings[J].Plant Cell Physiol,2001,42:1265-1273.
    [18]
    MOHSEN A K,MOHAMMAD S P,GHOLAM R G.Increasing of Soil Urease Activity by Stimulation of Indigenous Bacteria and Investigation of Their Role on Shear Strength[J].Geomicrobiology Journal,2018,35(10):821-828.
    [19]
    巩闪闪,刘晓静,张志勇,等.不同施氮措施对冬小麦农田土壤酶活性和氮转化的影响[J].生态环境学报,2020,29(11):2215-2222.
    [20]
    张文婕,杨莉莉,王金花,等.三种抗生素与铜复合污染对土壤过氧化氢酶活性的影响[J].农业资源与环境学报,2020,37(1):135-143.
    [21]
    HUANG H M,YANG J,LI D.Recovery and removal of am-monia-nitrogen and phosphate from swine wastewater by internal recycling of struvite chlorination product[J].Bioresource Technology,2014,172:253-259.
    [22]
    唐登勇,张聪,徐建强,等.鸟粪石沉淀法预处理中等浓度氨氮废水研究[J].应用化工,2018,47(2):258-261.
    [23]
    OHLINGER K N,YOUNG T M,SCHROEDER E D.Predicting struvite formation in digestion[J].Water Research,1998,32(12):3607-3614.
    [24]
    宋正国,唐世荣,丁永祯,等.田间条件下不同钝化材料对玉米吸收镉的影响研究[J].农业环境科学学报,2011,30(11):2152-2159.
    [25]
    WANG T,LIU M Q,LI H X.Inoculation of phosphate-solubilizing bacteria Bacillus thunngiensis B1 increases available phosphorus and growth of peanut in acidic soil[J].Acta Agriculturae Scandinavica,Section B:Soil and Plant Science,2014,64(3):252-259.
    [26]
    王健,夏鹏,张志昊,等.鸟粪石负载硅藻土复合材料对土壤中锌的稳定化作用[J].环境工程学报,2018,12(4):1164-1170.
    [27]
    HE S Y,YANG X E,HE Z L,et al.Morphological and physiological responses of plants to cadmium toxicity:a review[J].Pedosphere,2017,27(3):421-438.
    [28]
    刘帆,张荣斌,王飞,等.鸟粪石-沸石复合材料对水中镉的吸附性能研究[J].环境科学学报,2019,39(9):2988-2996.
    [29]
    李张伟,黄家爱.纳米羟基磷灰石对铅污染土壤中小白菜铅吸收特性和生理生化特征的影响[J].水土保持学报,2013,27(1):130-135.
    [30]
    杜志敏,向凌云,杜凯敏,等.磷灰石、石灰对Cd胁迫下黑麦草根形态及Cd吸收影响研究[J].农业环境科学学报,2021,40(1):92-101.
    [31]
    HUANG L M,YU G W,CAI X,et al.Immobilization of Pb,Cd,Cu and Zn in a multi-metal contaminated acidic soil using inorganic amendment mixtures[J].International Journal of Environmental Research,2017,11(4):425-437.
    [32]
    金玉.纳米羟基磷灰石与黑麦草联合修复铅污染土壤的研究[D].保定:河北大学,2015.
    [33]
    滕应,骆永明,李振高.土壤重金属复合污染对脲酶、磷酸酶及脱氢酶的影响[J].中国环境科学,2008,28(2):147-152.
    [34]
    CHEN Y X,WU P Q,CHEN M,et al.Effect of gossypol acetate on dynamic characteristics of soil urease[J].Journal of Soil and Water Conservation,2013,27(3):265-268.
    [35]
    FENG L J,ZHANG L Q,FENG L,et al.Dissipation of polycyclic aromatic hydrocarbons (PAHs) in soil amended with sewage sludge and sludge compost[J].Environmental Science and Pollution Research International,2019,26(33):34127-34136.
  • Relative Articles

    [1]CHEN Yating, ZHAO Xinyu, LI Yanhong, ZHANG Chuanyan, DANG Qiuling, XI Beidou. ENVIRONMENTAL BEHAVIOR AND RESTORATION PROGRESS OF EMERGING CONTAMINANTS IN CONTAMINATED SITES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 166-176. doi: 10.13205/j.hjgc.202401022
    [2]ZHANG Wei, TANG Yifan, WANG Chen, CHAI Senyou, ZUO Qiting. RESEARCH PROGRESS ON SOIL REPLACEMENT MEDIUM IN BIOLOGICAL RETENTION FACILITIES FOR SPONGE CITY CONSTRUCTION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 277-285. doi: 10.13205/j.hjgc.202308035
    [3]CHEN Zhikang, LIU Liujun, YIN Lipu, YUE Rui, MAO Xuhui. RESEARCH PROGRESS OF ELECTRICAL RESISTANCE HEATING FOR SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 224-234,243. doi: 10.13205/j.hjgc.202204032
    [4]HUANG Xuan, GUO Bao-man, GU Ai-liang, ZHANG Yun, TIAN Tian, CENG Yue-chun. RESEARCH ADVANCES AND APPLICATION OF HORIZONTAL REMEDIATION WELLS IN SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 262-269. doi: 10.13205/j.hjgc.202209035
    [5]HUANG Guoxin, LIU Ruiping, YANG Ruijie, ZHANG Tao, ZHANG Qiulei, WANG Xiahui, TIAN Zi, WANG Yipeng. RESEARCH PROCESS OF RISK MANAGEMENT AND CONTROL AND THEIR APPLICATION REQUIREMENTS FOR FARMLAND SOIL HEAVY METAL CONTAMINATION IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 216-223. doi: 10.13205/j.hjgc.202201031
    [6]WU Fan, NIU Dong-jie. REVIEW ON PREDICTIVE MODELS FOR MUNICIPAL SOLID WASTE PRODUCTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 128-133. doi: 10.13205/j.hjgc.202104020
    [7]LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020
    [8]LIANG Jing, WANG Shi-jie, ZHANG Wen-yu, ZHANG Dan, ZHANG Yuan, ZOU Hui. REVIEW ON CONTAMINATED SITE REMEDIATION TECHNOLOGIES IN THE USA AND THEIR REVELATION TO CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 173-178. doi: 10.13205/j.hjgc.202106026
    [9]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [10]GUO Li-li, KANG Shao-guo, WANG Qi, XIONG Jing, LI Shu-peng, KONG Jiao-yan. PERMEABLE REACTIVE BARRIER FOR CHROMIUM CONTAMINATED GROUNDWATER REMEDIATION:AN OVERVIEW[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 9-15. doi: 10.13205/j.hjgc.202006002
    [11]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [12]ZHANG Ruo-shi, TIAN Yong-qiang. RESEARCH PROGRESS OF BIOSORPTION REMEDIATION TECHNOLOGIES FOR CHROMIUM CONTAMINATED SITES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 187-195. doi: 10.13205/j.hjgc.202011031
    [13]SUN Zeng-zhi, YANG Bao-shuai, GUAN Bo-wen, GAO Si-qi, DENG Chen-ji, CHEN Yu-hong. RESEARCH PROGRESS ON MECHANICAL PROPERTIES OF RECYCLED CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 221-227. doi: 10.13205/j.hjgc.202006036
    [14]FENG Chao, WANG Yu, KONG Ling-rong, YUE Chang-sheng, YAO De-jun, WANG Zhi-qiao. ADVANCES OF SUPERCRITICAL WATER REMEDIATION TECHNOLOGY FOR ORGANIC POLLUTANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 140-145. doi: 10.13205/j.hjgc.202010022
    [15]Deng Yirong, Lin Ting, Xiao Rongbo, Zhao Lu, Han Cunliang. RECENT ADVANCES IN THE APPLICATION OF EKR-PRB IN CONTAMINATED SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 152-157. doi: 10.13205/j.hjgc.201510034
    [16]Yao Yuping Liu Hanxiao Zhu Shaoping, . STUDY ON PARTICULATE MATTER GRAVIMETRIC METHOD AT LOW CONCENTRATION FOR COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 139-142. doi: 10.13205/j.hjgc.201510031
    [17]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [18]Yang Yang Song Naiping Liu Bingru He Tonghui An Hui, . THE CURRENT STATUS AND PROGRESSES OF CHANGES IN LAND USE PATTERN ON AGRO-PASTORAL ECOTONE OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 158-162. doi: 10.13205/j.hjgc.201503031
    [19]Yin Zhen, Zhang Junchao, Liao Shulin, Ma Qiang, Wang Qingguo, Zhang Jinfeng. RESEARCH AND APPLICATION OF THE REMEDIATION TECHNOLOGY FOR THE CHROMIUM CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 159-162. doi: 10.13205/j.hjgc.201501037
  • Cited by

    Periodical cited type(4)

    1. 于嘉璐,卢美霞,何苗苗,魏玉珍,蔡立群,潘占东,孛永明,李旭春. 生物炭和凹凸棒土负载纳米零价铁去除水中六价铬的性能与机理研究. 环境科学学报. 2024(07): 127-136 .
    2. 王雷,李红霞,崔兴兰,史新悦,郑鹏,孙英春,杨晓莉. 某高原区典型铬污染场地人体健康风险评价. 铜业工程. 2024(06): 18-24 .
    3. 徐汝悦,王子霄,沈禄,吴蓉蓉,姚芳婷,谭中原,刘恒蔚,张文超. Cr(Ⅵ)的生物修复技术研究进展. 生物技术通报. 2023(06): 49-60 .
    4. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.0 %FULLTEXT: 9.0 %META: 91.0 %META: 91.0 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.0 %其他: 8.0 %其他: 0.1 %其他: 0.1 %Central District: 0.1 %Central District: 0.1 %China: 1.2 %China: 1.2 %Japan: 0.1 %Japan: 0.1 %Saitama: 0.1 %Saitama: 0.1 %Tuen Mun San Hui: 0.3 %Tuen Mun San Hui: 0.3 %United States: 0.3 %United States: 0.3 %[]: 0.6 %[]: 0.6 %上海: 5.5 %上海: 5.5 %东莞: 1.1 %东莞: 1.1 %中山: 0.1 %中山: 0.1 %临汾: 0.1 %临汾: 0.1 %临沂: 0.3 %临沂: 0.3 %丽水: 0.1 %丽水: 0.1 %丽江: 0.1 %丽江: 0.1 %乌兰察布: 0.1 %乌兰察布: 0.1 %乐山: 0.1 %乐山: 0.1 %佛山: 0.4 %佛山: 0.4 %保定: 0.6 %保定: 0.6 %信阳: 0.1 %信阳: 0.1 %兰州: 0.1 %兰州: 0.1 %凉山彝族自治州: 0.1 %凉山彝族自治州: 0.1 %北京: 11.5 %北京: 11.5 %十堰: 0.1 %十堰: 0.1 %南京: 3.5 %南京: 3.5 %南充: 0.3 %南充: 0.3 %南宁: 0.2 %南宁: 0.2 %南昌: 1.1 %南昌: 1.1 %南通: 0.2 %南通: 0.2 %南通市崇川区: 0.1 %南通市崇川区: 0.1 %厦门: 0.5 %厦门: 0.5 %台北: 0.3 %台北: 0.3 %台州: 0.6 %台州: 0.6 %合肥: 1.2 %合肥: 1.2 %吉林: 0.4 %吉林: 0.4 %呼和浩特: 0.1 %呼和浩特: 0.1 %咸阳: 0.1 %咸阳: 0.1 %哈尔滨: 0.1 %哈尔滨: 0.1 %唐山: 0.2 %唐山: 0.2 %嘉兴: 0.1 %嘉兴: 0.1 %大同: 0.1 %大同: 0.1 %天津: 2.9 %天津: 2.9 %太原: 0.8 %太原: 0.8 %威海: 0.1 %威海: 0.1 %娄底: 0.1 %娄底: 0.1 %宁波: 0.4 %宁波: 0.4 %安庆: 0.1 %安庆: 0.1 %安康: 0.1 %安康: 0.1 %安顺: 0.1 %安顺: 0.1 %宜昌: 0.1 %宜昌: 0.1 %宜春: 0.6 %宜春: 0.6 %宝鸡: 0.1 %宝鸡: 0.1 %宣城: 0.6 %宣城: 0.6 %宫城: 0.1 %宫城: 0.1 %巴中: 0.1 %巴中: 0.1 %常州: 0.6 %常州: 0.6 %常德: 0.3 %常德: 0.3 %平顶山: 0.1 %平顶山: 0.1 %广州: 1.2 %广州: 1.2 %廊坊: 0.1 %廊坊: 0.1 %延安: 0.1 %延安: 0.1 %张家口: 1.3 %张家口: 1.3 %德州: 0.1 %德州: 0.1 %德阳: 0.1 %德阳: 0.1 %惠州: 0.2 %惠州: 0.2 %成都: 1.3 %成都: 1.3 %成都市双流区: 0.1 %成都市双流区: 0.1 %扬州: 0.3 %扬州: 0.3 %抚州: 0.1 %抚州: 0.1 %拉萨: 0.1 %拉萨: 0.1 %拉贾斯坦邦: 0.1 %拉贾斯坦邦: 0.1 %攀枝花: 0.1 %攀枝花: 0.1 %新乡: 0.3 %新乡: 0.3 %无锡: 0.5 %无锡: 0.5 %昆明: 0.8 %昆明: 0.8 %晋城: 0.1 %晋城: 0.1 %朝阳: 0.2 %朝阳: 0.2 %杭州: 3.9 %杭州: 3.9 %枣庄: 0.1 %枣庄: 0.1 %株洲: 1.0 %株洲: 1.0 %桂林: 0.4 %桂林: 0.4 %榆林: 0.1 %榆林: 0.1 %武汉: 2.6 %武汉: 2.6 %汕头: 0.1 %汕头: 0.1 %沈阳: 0.5 %沈阳: 0.5 %河源: 0.1 %河源: 0.1 %泸州: 0.1 %泸州: 0.1 %洛阳: 0.1 %洛阳: 0.1 %济南: 1.3 %济南: 1.3 %济源: 0.1 %济源: 0.1 %海口: 0.1 %海口: 0.1 %淄博: 0.4 %淄博: 0.4 %淮北: 0.1 %淮北: 0.1 %深圳: 0.7 %深圳: 0.7 %温州: 0.5 %温州: 0.5 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.1 %湘潭: 0.1 %漯河: 0.7 %漯河: 0.7 %潍坊: 0.1 %潍坊: 0.1 %潮州: 0.1 %潮州: 0.1 %濮阳: 0.1 %濮阳: 0.1 %烟台: 0.3 %烟台: 0.3 %眉山: 0.1 %眉山: 0.1 %石家庄: 1.0 %石家庄: 1.0 %福州: 0.8 %福州: 0.8 %绍兴: 0.3 %绍兴: 0.3 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 5.9 %芒廷维尤: 5.9 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 0.6 %苏州: 0.6 %葫芦岛: 0.1 %葫芦岛: 0.1 %衡水: 0.1 %衡水: 0.1 %衡阳: 0.2 %衡阳: 0.2 %衢州: 0.2 %衢州: 0.2 %襄阳: 0.1 %襄阳: 0.1 %西宁: 4.7 %西宁: 4.7 %西安: 1.5 %西安: 1.5 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %达州: 0.3 %达州: 0.3 %运城: 0.9 %运城: 0.9 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.1 %邯郸: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.7 %郑州: 1.7 %鄂州: 0.1 %鄂州: 0.1 %重庆: 2.0 %重庆: 2.0 %金华: 0.1 %金华: 0.1 %银川: 0.1 %银川: 0.1 %锦州: 0.4 %锦州: 0.4 %镇江: 0.1 %镇江: 0.1 %长春: 0.4 %长春: 0.4 %长沙: 3.2 %长沙: 3.2 %长治: 0.3 %长治: 0.3 %阜新: 0.1 %阜新: 0.1 %阳泉: 0.1 %阳泉: 0.1 %陇南: 0.1 %陇南: 0.1 %青岛: 2.5 %青岛: 2.5 %韶关: 0.1 %韶关: 0.1 %香港特别行政区: 0.3 %香港特别行政区: 0.3 %鹰潭: 0.1 %鹰潭: 0.1 %黄冈: 0.1 %黄冈: 0.1 %黄石: 0.6 %黄石: 0.6 %齐齐哈尔: 0.1 %齐齐哈尔: 0.1 %其他其他Central DistrictChinaJapanSaitamaTuen Mun San HuiUnited States[]上海东莞中山临汾临沂丽水丽江乌兰察布乐山佛山保定信阳兰州凉山彝族自治州北京十堰南京南充南宁南昌南通南通市崇川区厦门台北台州合肥吉林呼和浩特咸阳哈尔滨唐山嘉兴大同天津太原威海娄底宁波安庆安康安顺宜昌宜春宝鸡宣城宫城巴中常州常德平顶山广州廊坊延安张家口德州德阳惠州成都成都市双流区扬州抚州拉萨拉贾斯坦邦攀枝花新乡无锡昆明晋城朝阳杭州枣庄株洲桂林榆林武汉汕头沈阳河源泸州洛阳济南济源海口淄博淮北深圳温州湖州湘潭漯河潍坊潮州濮阳烟台眉山石家庄福州绍兴绵阳芒廷维尤芝加哥苏州葫芦岛衡水衡阳衢州襄阳西宁西安贵阳赣州达州运城遵义邯郸邵阳郑州鄂州重庆金华银川锦州镇江长春长沙长治阜新阳泉陇南青岛韶关香港特别行政区鹰潭黄冈黄石齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(3) Cited by(13)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return