Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHOU Yu-qi, CAO Qi, XU Jun-chao, LIU Chang-qing, ZHUO Gui-hua, CHEN Jian-yong, ZHENG Yu-yi. INFLUENCE OF DIFFERENT SOURCE SUBSTRATE SYSTEMS ON METHANOGENESIS OF RESIDUE FROM ANAEROBIC FERMENTATIVE HYDROGEN PRODUCTION USING COMBINED SLUDGE AND FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 123-130. doi: 10.13205/j.hjgc.202109018
Citation: WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029

STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)

doi: 10.13205/j.hjgc.202109029
  • Received Date: 2020-11-13
    Available Online: 2022-01-21
  • Through indoor simulation experiments, the effect of biosynthetic manganese oxide (Bio-MnOx) material on the stabilization of arsenic (As) in contaminated soil was studied. The results showed that:1) the addition of Bio-MnOx could effectively decrease the leaching amount of As, in which the water-soluble As content decreased from 2.28 mg/kg to 0.86 mg/kg, with a reduction efficiency of 62.3%; 2) the five-step continuous extraction results showed that the content of water-soluble As and surface-adsorbed fraction decreased significantly after Bio-MnOx treatment; 3) the environmental risk analysis further confirmed that the risk of As decreased significantly after Bio-MnOx treatment; 4) bacterial biodiversity analysis based on 16s RNA indicated that the richness of soil microbial diversity increased significantly after Bio-MnOx treatment; 5) the analysis of microbial community structure showed that the dominant bacterial community structure changed from Bacillus to Clostridium, Comamonas, and Clostridium sensu tricto at the genus level. In general, Bio-MnOx could be used as an effective biogenic material to stabilize As in soils.
  • [1]
    HE Z F,ZHANG Q Y,WEI Z,et al.Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge[J].Water Research,2019,157:83-93.
    [2]
    RAI P K,LEE S S,ZHANG M,et al.Heavy metals in food crops:health risks,fate,mechanisms,and management[J].Environment International,2019,125:365-385.
    [3]
    ZHOU Y T,NIU L L,LIU K,et al.Arsenic in agricultural soils across China:distribution pattern,accumulation trend,influencing factors,and risk assessment[J].Science of the Total Environment,2018,616/617:156-163.
    [4]
    郭军康,李艳萍,李永涛,等.采用草酸和EDTA去除农田土壤中砷和镉污染[J].环境工程,2019,37(5):70-75.
    [5]
    李多松,赵强,王香莲.UV/H2O2对土壤中As(Ⅲ)氧化效果的初步研究[J].环境工程,2015,33(5):166-169

    ,125.
    [6]
    柳秀颖,黄永炳,王丽丽,等.钛改性锰矿的除砷效果及机理研究[J].环境工程,2011,29(6):46-49.
    [7]
    CHEN J,WANG J Y,ZHANG G S,et al.Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J].Chemical Engineering Journal,2018,334:1518-1526.
    [8]
    XU X W,CHEN C,WANG P,et al.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution,2017,231:37-47.
    [9]
    LI B Y,ZHOU S,WEI D N,et al.Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2:pot experiment and field application[J].Science of the Total Environment,2019,650:546-556.
    [10]
    BARGAR J R,FULLER C C,MARCUS M A,et al.Structural characterization of terrestrial microbial Mn oxides from Pinal Creek,AZ[J].Geochimica et Cosmochimica Acta,2009,73(4):889-910.
    [11]
    SPIRO T G,BARGAR J R,SPOSITO G,et al.Bacteriogenic manganese oxides[J].Accounts of Chemical Research,2010,43(1):2-9.
    [12]
    TEBO B M,JOHNSON H A,MCCARTHY J K,et al.Geomicrobiology of manganese(Ⅱ) oxidation[J].Trends in Microbiology,2005,13(9):421-428.
    [13]
    VILLALOBOS M,TONER B,BARGAR J,et al.Characterization of the manganese oxide produced by pseudomonas putida strain MnB1[J].Geochimaet Cosmochimica Acta,2003,67(14):2649-2662.
    [14]
    WEBB S M,TEBO B M,BARGAR J R.Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp.strain SG-1[J].American Mineralogist,2015,90(8/9):1342-1357.
    [15]
    MIYATA N,MARUO K,TANI Y,et al.Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles[J].Geomicrobiology Journal,2006,23(2):63-73.
    [16]
    WATANABE J I,TANI Y,CHANG J,et al.As(Ⅲ) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2[J].Chemical Geology,2013,347:227-232.
    [17]
    WANG H W,LV Z J,SONG Y,et al.Adsorptive removal of Sb(Ⅲ) from wastewater by environmentally-friendly biogenic manganese oxide (BMO) materials:efficiency and mechanisms[J].Process Safety and Environmental Protection,2019,124:223-230.
    [18]
    BAI Y H,YANG T T,LIANG J S,et al.The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J].Water Research,2016,98(7):119-127.
    [19]
    SHIOWATANA J,MCLAREN R G,CHANMEKHA N,et al.Fractionation of arsenic in soil by a continuous-flow sequential extraction method[J].Journal of Environmental Quality,2001,30(6):1940-1949.
    [20]
    宋宜,王华伟,吴雅静,等.三价铁促进生物氧化锰稳定土壤砷的效果和机制[J].环境科学学报,2020,40(4):1460-1466.
    [21]
    梁金松,柏耀辉,胡承志,等.锰生物氧化的研究进展及在水处理中的应用[J].应用与环境生物学报,2013,19(1):11-19.
    [22]
    WANG Y N,TSANG Y F,WANG H,et al.Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials[J].Environmental Pollution,2020,258:113481.
    [23]
    WANG H,ZHANG D,MOU S,et al.Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J].Chemosphere,2015,136:102-110.
    [24]
    王建燕,张传巧,陈静,等.新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J].环境科学学报,2019,39(8):2575-2585.
    [25]
    费杨,阎秀兰,廖晓勇,等.铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J].环境科学学报,2016,36(11):4164-4172.
    [26]
    CHEN X M,ZENG X C,WANG J N,et al.Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain,Central China[J].Science of the Total Environment,2017,579:989-999.
    [27]
    DAS S,LIU C C,JEAN J S,et al.Dissimilatory arsenate reduction and in situ microbial activities and diversity in arsenic-rich groundwater of Chianan plain,southwestern Taiwan[J].Microbial Ecology,2016,71(2):365-374.
    [28]
    周爽,彭亮,雷鸣,等.纳米级二氧化锰材料阻控土壤砷向水稻迁移的研究[J].环境科学学报,2015,35(3):855-861.
  • Relative Articles

    [1]CAO Bofeng, LIU Zixin, WEI Cuiyu, TANG Yufei, SHI Yucui, JIANG Pingping. EFFECT OF Cr(Ⅵ) STRESS ON ROOT EXUDATES AND MICROBIAL COMPOSITION OF LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 175-181. doi: 10.13205/j.hjgc.202402021
    [2]HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023
    [3]TENG Hui, LI Dong, WU Junru. INTERFERENCE OF REMEDIATION AGENTS TO SOIL Cr(Ⅵ) DETERMINATION BY ALKALINE DIGESTION-FLAME ATOMIC ABSORPTION SPECTROMETRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 143-151. doi: 10.13205/j.hjgc.202211020
    [4]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [5]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [6]LAI Dong-lin, ZHANG Qi, CHEN Ting-ting, CHEN Hui-xia, TONG Xue-jiao, XU Hong-bin, LIU Xing-hai, ZHAO Cai-yun. REMEDIATION PRACTICE OF HEXAVALENT CHROMIUM AND CYANIDE CONTAMINATED SOIL AT THE ORIGINAL SITE OF A MACHINERY PLANT IN ZHANGJIAKOU,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 75-80. doi: 10.13205/j.hjgc.202006012
    [7]XI Dong-dong, LI Xiao-min, XIONG Zi-xuan, JIANG Zhi, ZHANG Xiao-ming, YANG Wei-chun. SYNERGISTIC REMOVAL OF Cu, Co, Ni AND Cr FROM CONTAMINATED SOIL BY BIOCHAR-SUPPORTED NANOSCALE ZERO-VALENT IRON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 58-66. doi: 10.13205/j.hjgc.202006010
    [8]YANG Wen-xiao, ZHANG Li, BI Xue, LI Huan-ru, GU Qian. RESEARCH ADVANCEMENT OF STABILIZATION MATERIALS FOR HEXAVALENT CHROMIUM(Ⅵ) CONTAMINATED SITE SOILS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 16-23. doi: 10.13205/j.hjgc.202006003
    [10]Zhang Qingle Dong Jian Zhang Liqing Wang Jixiang Li Zejiao Li Rui, . ADSORPTION CHARACTERISTICS OF HEXAVALENT CHROMIUM ON POPLAR LEAF MODIFIED BY OXALATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 64-69. doi: 10.13205/j.hjgc.201505014
    [11]Zhao Ligang, Pu Shengyan, Yang Jinyan, Yu Jing, Wang Youle. THE Cr( VI) POLLUTION CHARACTERISTICS OF GROUNDWATER AND SOIL IN THE SURROUNDINGS OF A CHROMIUM SLAG SITE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 117-121. doi: 10.13205/j.hjgc.201502026
  • Cited by

    Periodical cited type(7)

    1. 田文娟,郭丽,杜维,郑丹. 柱后衍生-离子色谱法测定固废中的六价铬方法优化. 广州化工. 2024(20): 110-114 .
    2. 杨柳晨,王小钊,邢丹. 铬盐污染土壤六价铬标准物质不确定度评估. 福建分析测试. 2024(06): 53-59 .
    3. 吕旭,韩建. 碱消解-火焰原子吸收光谱法检测土壤中的六价铬方法改进. 山东化工. 2022(13): 89-91+97 .
    4. 褚琳琳,王静云,金晓霞,汪碧芬,孔翠羽. 碱溶液提取-离子交换-电感耦合等离子体质谱法测定土壤中六价铬. 岩矿测试. 2022(05): 826-835 .
    5. 陈秀梅,王靖宜. 碱性微波提取-ICP/MS法测定土壤中六价铬. 环境监测管理与技术. 2022(06): 56-59 .
    6. 邱沙,宋景鹏,陈志国,白鹤,曹文庆,刘艺芸. 原位化学还原技术修复铬污染土壤及其工程应用. 环境科学与技术. 2021(04): 131-139 .
    7. 王世悦. 工作场所中六价铬和总铬火焰原子吸收法的研究. 质量安全与检验检测. 2020(05): 138-139 .

    Other cited types(1)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.2 %FULLTEXT: 14.2 %META: 81.7 %META: 81.7 %PDF: 4.0 %PDF: 4.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 21.3 %其他: 21.3 %[]: 0.5 %[]: 0.5 %上海: 3.8 %上海: 3.8 %临汾: 0.5 %临汾: 0.5 %丽水: 0.5 %丽水: 0.5 %北京: 4.4 %北京: 4.4 %台州: 3.8 %台州: 3.8 %哈尔滨: 0.5 %哈尔滨: 0.5 %天津: 0.5 %天津: 0.5 %宣城: 1.1 %宣城: 1.1 %常德: 0.5 %常德: 0.5 %张家口: 3.8 %张家口: 3.8 %成都: 1.6 %成都: 1.6 %昆明: 0.5 %昆明: 0.5 %晋城: 1.1 %晋城: 1.1 %朝阳: 0.5 %朝阳: 0.5 %杭州: 2.2 %杭州: 2.2 %武汉: 0.5 %武汉: 0.5 %汕头: 0.5 %汕头: 0.5 %沈阳: 2.7 %沈阳: 2.7 %济源: 0.5 %济源: 0.5 %温州: 1.1 %温州: 1.1 %湖州: 2.2 %湖州: 2.2 %漯河: 1.6 %漯河: 1.6 %福州: 1.1 %福州: 1.1 %秦皇岛: 1.1 %秦皇岛: 1.1 %芒廷维尤: 18.6 %芒廷维尤: 18.6 %苏州: 0.5 %苏州: 0.5 %衢州: 1.1 %衢州: 1.1 %西宁: 8.7 %西宁: 8.7 %贵阳: 0.5 %贵阳: 0.5 %运城: 6.0 %运城: 6.0 %遵义: 0.5 %遵义: 0.5 %邯郸: 1.1 %邯郸: 1.1 %郑州: 1.1 %郑州: 1.1 %重庆: 0.5 %重庆: 0.5 %铁岭: 0.5 %铁岭: 0.5 %长沙: 1.1 %长沙: 1.1 %长治: 0.5 %长治: 0.5 %其他[]上海临汾丽水北京台州哈尔滨天津宣城常德张家口成都昆明晋城朝阳杭州武汉汕头沈阳济源温州湖州漯河福州秦皇岛芒廷维尤苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭长沙长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (154) PDF downloads(1) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return