Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 9
Jan.  2022
Turn off MathJax
Article Contents
WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029
Citation: WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029

STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)

doi: 10.13205/j.hjgc.202109029
  • Received Date: 2020-11-13
    Available Online: 2022-01-21
  • Through indoor simulation experiments, the effect of biosynthetic manganese oxide (Bio-MnOx) material on the stabilization of arsenic (As) in contaminated soil was studied. The results showed that:1) the addition of Bio-MnOx could effectively decrease the leaching amount of As, in which the water-soluble As content decreased from 2.28 mg/kg to 0.86 mg/kg, with a reduction efficiency of 62.3%; 2) the five-step continuous extraction results showed that the content of water-soluble As and surface-adsorbed fraction decreased significantly after Bio-MnOx treatment; 3) the environmental risk analysis further confirmed that the risk of As decreased significantly after Bio-MnOx treatment; 4) bacterial biodiversity analysis based on 16s RNA indicated that the richness of soil microbial diversity increased significantly after Bio-MnOx treatment; 5) the analysis of microbial community structure showed that the dominant bacterial community structure changed from Bacillus to Clostridium, Comamonas, and Clostridium sensu tricto at the genus level. In general, Bio-MnOx could be used as an effective biogenic material to stabilize As in soils.
  • loading
  • [1]
    HE Z F,ZHANG Q Y,WEI Z,et al.Multiple-pathway arsenic oxidation and removal from wastewater by a novel manganese-oxidizing aerobic granular sludge[J].Water Research,2019,157:83-93.
    [2]
    RAI P K,LEE S S,ZHANG M,et al.Heavy metals in food crops:health risks,fate,mechanisms,and management[J].Environment International,2019,125:365-385.
    [3]
    ZHOU Y T,NIU L L,LIU K,et al.Arsenic in agricultural soils across China:distribution pattern,accumulation trend,influencing factors,and risk assessment[J].Science of the Total Environment,2018,616/617:156-163.
    [4]
    郭军康,李艳萍,李永涛,等.采用草酸和EDTA去除农田土壤中砷和镉污染[J].环境工程,2019,37(5):70-75.
    [5]
    李多松,赵强,王香莲.UV/H2O2对土壤中As(Ⅲ)氧化效果的初步研究[J].环境工程,2015,33(5):166-169

    ,125.
    [6]
    柳秀颖,黄永炳,王丽丽,等.钛改性锰矿的除砷效果及机理研究[J].环境工程,2011,29(6):46-49.
    [7]
    CHEN J,WANG J Y,ZHANG G S,et al.Facile fabrication of nanostructured cerium-manganese binary oxide for enhanced arsenite removal from water[J].Chemical Engineering Journal,2018,334:1518-1526.
    [8]
    XU X W,CHEN C,WANG P,et al.Control of arsenic mobilization in paddy soils by manganese and iron oxides[J].Environmental Pollution,2017,231:37-47.
    [9]
    LI B Y,ZHOU S,WEI D N,et al.Mitigating arsenic accumulation in rice (Oryza sativa L.) from typical arsenic contaminated paddy soil of southern China using nanostructured α-MnO2:pot experiment and field application[J].Science of the Total Environment,2019,650:546-556.
    [10]
    BARGAR J R,FULLER C C,MARCUS M A,et al.Structural characterization of terrestrial microbial Mn oxides from Pinal Creek,AZ[J].Geochimica et Cosmochimica Acta,2009,73(4):889-910.
    [11]
    SPIRO T G,BARGAR J R,SPOSITO G,et al.Bacteriogenic manganese oxides[J].Accounts of Chemical Research,2010,43(1):2-9.
    [12]
    TEBO B M,JOHNSON H A,MCCARTHY J K,et al.Geomicrobiology of manganese(Ⅱ) oxidation[J].Trends in Microbiology,2005,13(9):421-428.
    [13]
    VILLALOBOS M,TONER B,BARGAR J,et al.Characterization of the manganese oxide produced by pseudomonas putida strain MnB1[J].Geochimaet Cosmochimica Acta,2003,67(14):2649-2662.
    [14]
    WEBB S M,TEBO B M,BARGAR J R.Structural characterization of biogenic Mn oxides produced in seawater by the marine Bacillus sp.strain SG-1[J].American Mineralogist,2015,90(8/9):1342-1357.
    [15]
    MIYATA N,MARUO K,TANI Y,et al.Production of biogenic manganese oxides by anamorphic ascomycete fungi isolated from streambed pebbles[J].Geomicrobiology Journal,2006,23(2):63-73.
    [16]
    WATANABE J I,TANI Y,CHANG J,et al.As(Ⅲ) oxidation kinetics of biogenic manganese oxides formed by Acremonium strictum strain KR21-2[J].Chemical Geology,2013,347:227-232.
    [17]
    WANG H W,LV Z J,SONG Y,et al.Adsorptive removal of Sb(Ⅲ) from wastewater by environmentally-friendly biogenic manganese oxide (BMO) materials:efficiency and mechanisms[J].Process Safety and Environmental Protection,2019,124:223-230.
    [18]
    BAI Y H,YANG T T,LIANG J S,et al.The role of biogenic Fe-Mn oxides formed in situ for arsenic oxidation and adsorption in aquatic ecosystems[J].Water Research,2016,98(7):119-127.
    [19]
    SHIOWATANA J,MCLAREN R G,CHANMEKHA N,et al.Fractionation of arsenic in soil by a continuous-flow sequential extraction method[J].Journal of Environmental Quality,2001,30(6):1940-1949.
    [20]
    宋宜,王华伟,吴雅静,等.三价铁促进生物氧化锰稳定土壤砷的效果和机制[J].环境科学学报,2020,40(4):1460-1466.
    [21]
    梁金松,柏耀辉,胡承志,等.锰生物氧化的研究进展及在水处理中的应用[J].应用与环境生物学报,2013,19(1):11-19.
    [22]
    WANG Y N,TSANG Y F,WANG H,et al.Effective stabilization of arsenic in contaminated soils with biogenic manganese oxide (BMO) materials[J].Environmental Pollution,2020,258:113481.
    [23]
    WANG H,ZHANG D,MOU S,et al.Simultaneous removal of tetracycline hydrochloride and As(Ⅲ) using poorly-crystalline manganese dioxide[J].Chemosphere,2015,136:102-110.
    [24]
    王建燕,张传巧,陈静,等.新型铁铜锰复合氧化物颗粒吸附剂As(Ⅲ)吸附行为与机制研究[J].环境科学学报,2019,39(8):2575-2585.
    [25]
    费杨,阎秀兰,廖晓勇,等.铁锰双金属材料对砷和重金属复合污染土壤的稳定化研究[J].环境科学学报,2016,36(11):4164-4172.
    [26]
    CHEN X M,ZENG X C,WANG J N,et al.Microbial communities involved in arsenic mobilization and release from the deep sediments into groundwater in Jianghan plain,Central China[J].Science of the Total Environment,2017,579:989-999.
    [27]
    DAS S,LIU C C,JEAN J S,et al.Dissimilatory arsenate reduction and in situ microbial activities and diversity in arsenic-rich groundwater of Chianan plain,southwestern Taiwan[J].Microbial Ecology,2016,71(2):365-374.
    [28]
    周爽,彭亮,雷鸣,等.纳米级二氧化锰材料阻控土壤砷向水稻迁移的研究[J].环境科学学报,2015,35(3):855-861.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (132) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return