Citation: | ZHU Shu-ying, LIU Hui, DONG Jin-chi, CAI Bo-feng, HE Jie, YANG Lu, XIA Chu-yu, TANG Ling. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST CURVES FOR CEMENT INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 15-22. doi: 10.13205/j.hjgc.202110003 |
[1] |
李晟.高质量发展视角下产业结构升级对我国碳减排的影响[J].可持续发展,2021,11(1):149-159.
|
[2] |
国务院.习近平在第七十五届联合国大会一般性辩论上发表重要讲话[J]. 北京:新华社,2020[09-22]. http://www.gov.cn/xinwen/2020-09
/22/content_5546168.htm.
|
[3] |
CHEN W, HONG J L, XU C Q. Pollutants generated by cement production in China, their impacts, and the potential for environmental improvement[J]. Journal of Cleaner Production, 2015, 103:61-69.
|
[04] |
. https://webstore.iea.org/technologyroadmap-low-carbon-transition-in-the-cement-industry.
|
[4] |
丁美荣.水泥行业碳排放现状分析与减排关键路径探讨[EB/OL].北京:数字水泥网,2021[06-10],http://www.dcement.com/article/202106/181005.
html.
|
[5] |
LIU Z, CIAIS P, DENG Z, et al. Carbon Monitor, a near-real-time daily dataset of global CO2 emission from fossil fuel and cement production[J]. Scientific Data, 2020, 7:392.
|
[6] |
刘大钧,汪家权.新形势下加强水泥行业环保工作的建议[J].环境工程,2015,33(9):118-120.
|
[7] |
ZHANG C Y, YU B Y, CHEN J M, et al. Green transition pathways for cement industry in China[J]. Resources, Conservation and Recycling, 2021, 166:105355.
|
[8] |
刘姚君,汪澜.水泥窑协同处置固体废物技术减排潜力与成本分析[J].水泥,2018(3):11-14.
|
[9] |
刘楠峰,范莉莉,陈肖琳.碳交易机制下以技术投入为导向的边际减排成本曲线研究:以水泥、火电、煤炭和钢铁行业为例[J].中国科技论坛,2017,5(7):57-63.
|
[10] |
顾阿伦,史宵鸣,汪澜,等.中国水泥行业节能减排的潜力与成本分析[J].中国人口·资源与环境,2012,22(8):16-21.
|
[11] |
YUE X F, DEANE J P, O'GALLACHOIR B, et al. Identifying decarbonisation opportunities using marginal abatement cost curves and energy system scenario ensembles[J]. Applied Energy, 2020, 276:115456.
|
[12] |
吴力波,钱浩祺,汤维祺.基于动态边际减排成本模拟的碳排放权交易与碳税选择机制[J].经济研究,2014,49(9):48-61.
|
[13] |
Enkvist P, Dinkel J, Lin C. Pathways to a Low-Carbon Economy:Version 2 of the Global Greenhouse Gas Abatement Cost Curve[EB/OL]. Mckinsey Company, 2013[09-01], https://www.mckinsey.com/business-functions/sustainability/our-insights/pathways-to-a-low-carbon-economy.
|
[14] |
JI D, ZHOU P. Marginal abatement cost, air pollution and economic growth:evidence from Chinese cities[J]. Energy Economics, 2020:86.
|
[15] |
PARK H, LIM J. Valuation of marginal CO2 abatement options for electric power plants in Korea[J]. Energy Policy, 2009, 37(5):1834-1841.
|
[16] |
LEE M, ZHANG N. Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries[J]. Energy Economics, 2012, 34(5):1492-1497.
|
[17] |
CHOI Y, NING Z, ZHOU P. Efficiency and abatement costs of energy-related CO2 emissions in China:a slacks-based efficiency measure[J]. Applied Energy, 2012, 98:198-208.
|
[18] |
MATSUSHITA K, YAMANE F. Pollution from the electric power sector in Japan and efficient pollution reduction[J]. Energy Economics, 2012, 34(4):1124-1130.
|
[19] |
ZENG S H, JIANG X, SU B, et al. China's SO2 shadow prices and environmental technical efficiency at the province level[J]. International Review of Economics and Finance, 2018, 57:86-102.
|
[20] |
CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896.
|
[21] |
贾彦鹏,刘仁志.基于LEAP模型的城市能源规划与CO2减排研究:以景德镇为例[J].应用基础与工程科学学报,2010,18(7):75-83.
|
[22] |
汤铃,武佳倩,戴伟,等.碳交易机制对中国经济与环境的影响[J].系统工程学报,2014,29(5):701-712.
|
[23] |
XIAO H, WEI Q, WANG H. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
|
[24] |
KLEPPER G, PETERSON S. Marginal abatement cost curves in general equilibrium:The influence of world energy prices[J]. Resource and Energy Economics, 2006, 28(1):1-23.
|
[25] |
FERNANDEZ P, LEUNG Y. Technology roadmap-low-carbon transition in the cement industry[J]. International Energy Agency, 2018
|
[26] |
工业和信息化部,中华人民共和国工业和信息化部.国家工业节能技术装备推荐目录(2019-2020)[M].北京:中华人民共和国工业和信息化部,2019-2020.
|
[27] |
工业和信息化部,中华人民共和国工业和信息化部.国家工业节能技术应用指南与案例(2019-2020)[M].北京:中华人民共和国工业和信息化部,2019-2020.
|
[28] |
何峰,刘峥延,邢有凯,等.中国水泥行业节能减排措施的协同控制效应评估研究[J].气候变化研究进展,2021,17(4):400-409.
|
[29] |
WANG Y, HÖLLER S, VIEBAHN P, et al. Integrated assessment of CO2 reduction technologies in China's cement industry[J]. International Journal of Greenhouse Gas Control, 2014, 20:27-36.
|
[30] |
蔡博峰,李琦,张贤,等.中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R].生态环境部环境规划院,中国科学院武汉岩土力学研究所,中国21世纪议程管理中心.2021.
|
[31] |
XU J, YI B, FAN Y. A bottom-up optimization model for long-term CO2 emissions reduction pathway in the cement industry:a case study of China[J]. International Journal of Greenhouse Gas Control, 2016, 44:199-216.
|
[32] |
蔡博峰,曹东,周颖,等.中国水泥企业能源消耗特征分析[J].环境工程,2011,29(2):123-126.
|
[33] |
魏军晓,耿元波,沈镭,等.基于国内水泥生产现状的碳排放因子测算[J].中国环境科学,2014,34(11):2970-2975.
|
[34] |
程婷.水泥行业温室气体减排潜力分析[D].合肥:合肥工业大学,2014:39.
|
[35] |
ZUBERI M, PATEL M. Bottom-up analysis of energy efficiency improvement and CO2 emission reduction potentials in the swiss cement industry[J]. Journal of Cleaner Production, 2017, 142(4), 4294-4309.
|
[36] |
NORDHAUS W. Special issue on global warming||the cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65.
|
[37] |
兰文献,王兆祥,潘民夫,等.节能型水泥生料降硫助剂辊压机终粉磨应用效果浅析[J].中国水泥,2021(6):102-104.
|
[38] |
GHOULEH Z, SHAO Y. Turning municipal solid waste incineration into a cleaner cement production[J]. Journal of Cleaner Production, 2018, 195(10):268-279.
|
[39] |
张立,谢紫璇,曹丽斌,等.中国城市碳达峰评估方法初探[J].环境工程,2020,38(11):1-5
,43.
|
[40] |
BOSOAGA A, MASEK O, OAKEY J. CO2 Capture Technologies for Cement Industry[J]. Energy Procedia, 2009, 1(1):133-140.
|
[41] |
冯烨.中国工业重点行业技术进步的节能减排潜力研究[D].北京:北京理工大学,2015:46.
|
[42] |
ZHOU W J, JIANG D, CHEN D J, et al. Capturing CO2 from cement plants:a priority for reducing CO2 emissions in China[J]. Energy, 2016, 106:464-474.
|
[43] |
李哲.中国企业掘金千亿碳交易市场[N].北京:中国经营报,2021-08-02(B19).
|
[44] |
SLATER H, DE BOER D, 钱国强,等.2020年中国碳价调查[N].北京:中国碳论坛,2020. 欢迎订阅2022年《环境工程》 邮发代号:82-64
|