Citation: | DONG Jin-chi, WANG Xu-ying, CAI Bo-feng, WANG Jin-nan, LIU Hui, YANG Lu, XIA Chu-yu, LEI Yu. MITIGATION TECHNOLOGIES AND MARGINAL ABATEMENT COST FOR IRON AND STEEL INDUSTRY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 23-31,40. doi: 10.13205/j.hjgc.202110004 |
[1] |
WSA (World Steel Association). Steel Statistical Yearbook 2019[R/OL]. 2019.[https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook.html].
|
[2] |
杨楠, 李艳霞, 吕晨, 等. 唐山市钢铁行业碳排放核算及达峰预测[J]. 环境工程, 2020, 38(11):44-52.
|
[3] |
SHAN Y L, HUANG Q, GUAN D B, et al. China CO2 emission accounts 2016-2017[J]. Scientific Data, 2020, 7(1):54.
|
[4] |
WU X C, ZHAO L, ZHANG Y X, et al. Cost and potential of energy conservation and collaborative pollutant reduction in the iron and steel industry in China[J]. Applied Energy, 2016, 184:171-183.
|
[5] |
LI Y, ZHU L. Cost of energy saving and CO2 emissions reduction in China's iron and steel sector[J]. Applied Energy, 2014, 130:603-616.
|
[6] |
WSA (World Steel Association). Steel's Contribution to A Low Carbon Future and Climate Resilient Societies[R/OL]. 2017.[https://www.worldsteel.org/en/dam/jcr:66fed386-fd0b-485e-aa23-b8a5e7533435/Position_paper_climate_2018.pdf].
|
[7] |
ZHANG S H, YI B W, WORRELL E, et al. Integrated assessment of resource-energy-environment nexus in China's iron and steel industry[J]. Journal of Cleaner Production, 2019, 232:235-249.
|
[8] |
REN L, ZHOU S, PENG T D, et al. A review of CO2 emissions reduction technologies and low-carbon development in the iron and steel industry focusing on China[J]. Renewable and Sustainable Energy Reviews, 2021, 143:110846.
|
[9] |
VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653.
|
[10] |
DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229.
|
[11] |
魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
|
[12] |
KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204.
|
[13] |
WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362.
|
[14] |
XIONG W M, YANG Y Z, WANG Y, et al. Marginal abatement cost curve for wind power in China:a provincial-level analysis[J]. Energy Science & Engineering, 2016, 4(4):245-255.
|
[15] |
XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
|
[16] |
YANG X, XI X, GUO S, et al. Carbon mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):3331-3345.
|
[17] |
FAN Z Y, FRIEDMANN S J. Low-carbon production of iron and steel:technology options, economic assessment, and policy[J]. Joule, 2021, 5(4):829-862.
|
[18] |
HE K, WANG L. A review of energy use and energy-efficient technologies for the iron and steel industry[J]. Renewable and Sustainable Energy Reviews, 2017, 70:1022-1039.
|
[19] |
CHEN Q Q, GU Y, TANG Z Y, et al. Assessment of low-carbon iron and steel production with CO2 recycling and utilization technologies:a case study in China[J]. Applied Energy, 2018, 220:192-207.
|
[20] |
李新创, 李冰. 全球温控目标下中国钢铁工业低碳转型路径[J]. 钢铁, 2019, 54(8):224-231.
|
[21] |
李冰, 李新创, 李闯. 国内外钢铁工业能源高效利用新进展[J]. 工程研究-跨学科视野中的工程, 2017, 9(1):68-77.
|
[22] |
叶友斌, 邢芳芳, 刘锟, 等. 我国钢铁企业二氧化碳排放结构探讨[J]. 环境工程, 2012, 30(增刊2):224-227,245.
|
[23] |
YILMAZ C, WENDELSTORF J, TUREK T. Modeling and simulation of hydrogen injection into a blast furnace to reduce carbon dioxide emissions[J]. Journal of Cleaner Production, 2017, 154:488-501.
|
[24] |
ABDUL QUADER M, AHMED S, DAWAL S Z, et al. Present needs, recent progress and future trends of energy-efficient ultra-low carbon dioxide (CO2) steelmaking (ULCOS) program[J]. Renewable and Sustainable Energy Reviews, 2016, 55:537-549.
|
[25] |
NISHIOKA K, UJISAWA Y, TONOMURA S, et al. Sustainable aspects of CO2 ultimate reduction in the steelmaking process (COURSE50 Project), Part 1:hydrogen reduction in the blast furnace[J]. Journal of Sustainable Metallurgy, 2016, 2(3):200-208.
|
[26] |
PEI M, PETÄJÄNIEMI M, REGNELL A, et al. Toward a fossil free future with HYBRIT:development of iron and steelmaking technology in Sweden and Finland[J]. Metals, 2020, 10(7).
|
[27] |
王广, 王静松, 左海滨, 等. 高炉煤气循环耦合富氢对中国炼铁低碳发展的意义[J]. 中国冶金, 2019, 29(10):1-6.
|
[28] |
AN R Y, YU B Y, LI R, et al. Potential of energy savings and CO2 emission reduction in China's iron and steel industry[J]. Applied Energy, 2018, 226:862-880.
|
[29] |
IEA (International Energy Agency). Iron and Steel Technology Roadmap:Towards More Sustainable Steelmaking[R/OL]. 2020.[https://www.iea.org/reports/iron-and-steel-technology-roadmap].
|
[30] |
蔡博峰,李琦,张贤, 等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心.2021.
|
[31] |
CHEN W Y, YIN X, MA D. A bottom-up analysis of China's iron and steel industrial energy consumption and CO2 emissions[J]. Applied Energy, 2014, 136:1174-1183.
|
[32] |
DING H, ZHENG H R, LIANG X, et al. Getting ready for carbon capture and storage in the iron and steel sector in China:assessing the value of capture readiness[J]. Journal of Cleaner Production, 2020, 244:118953.
|
[33] |
LIANG X, GUO L Q, HASAN M, et al. Assessing the economics of CO2 capture in China's iron/steel sector:a case study[J]. Energy Procedia, 2019, 158:3715-3722.
|
[34] |
MORRIS J, PALTSEV S, REILLY J. Marginal abatement costs and marginal welfare costs for greenhouse gas emissions reductions:results from the EPPA model[J]. Environmental Modeling & Assessment, 2012, 17(4):325-336.
|
[35] |
KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[C]//IAEE International Conference, 2011.
|
[36] |
ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R]. MIT Joint Program on the Science and Policy of Global Change, 1998.
|
[37] |
DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690.
|
[38] |
CHEN W Y. The costs of mitigating carbon emissions in China:findings from China MARKAL-MACRO modeling[J]. Energy Policy, 2005, 33(7):885-896.
|
[39] |
VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386.
|
[40] |
NORDHAUS W D. Special Issue on Global Warming//The cost of slowing climate change:a survey[J]. Energy Journal, 1991, 12(1):37-65.
|
[41] |
蔡博峰, 庞凌云, 曹丽斌, 等. 《二氧化碳捕集、利用与封存环境风险评估技术指南(试行)》实施2年(2016-2018年)评估[J]. 环境工程, 2019, 37(2):1-7.
|