Citation: | DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005 |
[1] |
牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3):163-167.
|
[2] |
WANG H K, LU X, DENG Y, et al. China's CO2 peak before 2030 implied from characteristics and growth of cities[J]. Nature Sustainability, 2019, 2(8):748-754.
|
[3] |
何长全, 刘兰, 段宗志, 等. 生态文明环境下中国碳排放影响因素及减排措施分析[J]. 环境工程, 2015, 33(11):147-151.
|
[4] |
WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362.
|
[5] |
KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204.
|
[6] |
PIZER W, ADLER M, ALDY J, et al. Using and improving the social cost of carbon[J]. Science, 2014, 346(6214):1189-1190.
|
[7] |
PEARCE D. The social cost of carbon and its policy implications[J]. Oxford Review of Economic Policy, 2003, 19(3):362-384.
|
[8] |
NORDHAUS W. Estimates of the social cost of carbon:concepts and results from the DICE-2013R model and alternative approaches[J]. Journal of the Association of Environmental and Resource Economists, 2014, 1(1/2):273-312.
|
[9] |
PRICE R, HORNTON S, NELSON S. The Social Cost of Carbon and the Shadow Price of Carbon:What They Are, and How to Use Them in Economic Appraisal in the UK[R/OL]. Department for Environment, Food and Rural Affairs, 2007. https://www.gov.uk/government/publications/shadow-price-of-carbon-economic-appraisal-in-the-uk.
|
[10] |
PINDYCK R S. Climate change policy:what do the models tell us?[J]. Journal of Economic Literature, 2013, 51(3):860-872.
|
[11] |
STANTON F A A E A. Climate risks and carbon prices:revising the social cost of carbon[J]. Economics:The Open-Access, Open-Assessment E-Journal, 2012, 6:2012-10.
|
[12] |
PINDYCK R S. The use and misuse of models for climate policy[J]. Review of Environmental Economics and Policy, 2017, 11(1):100-114.
|
[13] |
PEZZEY J C V. Why the social cost of carbon will always be disputed[J]. WIREs Climate Change, 2019, 10(1):e558.
|
[14] |
UK, Department of Energy and Climate Change. Carbon Valuation in UK policy Appraisal:a revised approach[R]. 2009.[https://www.gov.uk/government/publications/carbon-valuation-in-uk-policy-appraisal-a-revised-approach].
|
[15] |
XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
|
[16] |
毛显强, 邢有凯, 胡涛, 等. 中国电力行业硫、氮、碳协同减排的环境经济路径分析[J]. 中国环境科学, 2012, 32(4):748-756.
|
[17] |
刘胜强, 毛显强, 胡涛, 等. 中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术, 2012, 35(7):168-174.
|
[18] |
DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229.
|
[19] |
KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[J]. IAEE International Conference, 2011.
|
[20] |
魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
|
[21] |
VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653.
|
[22] |
DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690.
|
[23] |
ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R/OL]. 1998. https://dspace.mit.edu/bitstream/handle/1721.1/3608/MITJPSPGC_Rpt40.pdf?sequence=1&origin=publication_detail.
|
[24] |
CRIQUI P, MIMA S, VIGUIER L. Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings:an assessment using the POLES model[J]. Energy Policy, 1999, 27(10):585-601.
|
[25] |
VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386.
|
[26] |
NORDHAUS W D. The Cost of Slowing Climate Change:a Survey[J]. The Energy Journal, 1991, 12(1):37-65.
|
[27] |
CHEN J M, YU B, WEI Y M. CO2 emissions accounting for the chemical industry:an empirical analysis for China[J]. Natural Hazards, 2019, 99(3):1327-1343.
|
[28] |
YANEZ A E. Greenhouse gas mitigation strategies for the oil industry-bottom-up system analysis on the transition of the Colombian oil production and refining sector[R/OL]. University of Groningen, 2021.https://research.rug.nl/en/publications/greenhouse-gas-mitigation-strategies-for-the-oil-industry-bottom-.
|
[29] |
UK, Department for Business, Energy and Industrial Strategy. Oil Refining Sector:Industrial Decarbonisation and Energy Efficiency Roadmap Action Plan[R/OL]. 2017. https://www.gov.uk/government/publications/industrial-decarbonisation-and-energy-efficiency-action-plans.
|
[30] |
ACCENTURE. Decarbonizing Energy:From A to Zero[R/OL]. 2020. https://www.accenture.com/th-en/insights/energy/decarbonizing-energy-overview.
|
[31] |
汪芳, 秦积舜, 周体尧, 等. 基于油藏CO2驱油潜力的CCUS源汇匹配方法[J]. 环境工程, 2019, 37(2):51-56.
|
[32] |
王韶华, 于维洋, 张伟. 低碳经济的驱动因素及其驱动机理分析[J]. 环境工程, 2014, 32(12):143-147.
|
[33] |
ZHOU W J, ZHU B, LI Q, et al. CO2 emissions and mitigation potential in China's ammonia industry[J]. Energy Policy, 2010, 38(7):3701-3709.
|
[34] |
IEA. The Future of Hydrogen, IEA, Paris[R/OL]. 2019. https://www.iea.org/reports/the-future-of-hydrogen.
|
[35] |
BP. Statistical Review of World Energy[R/OL]. 2020. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
|
[36] |
YANG X, XI X, GUO S, et al. Carbon Mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):331-3345.
|
[37] |
TAKHT RAVANCHI M, SAHEBDELFAR S. Carbon dioxide capture and utilization in petrochemical industry:potentials and challenges[J]. Applied Petrochemical Research, 2014, 4(1):63-77.
|
[38] |
IEA. Special Report on Carbon Capture Utilisation and Storage[R/OL]. 2020. https://www.iea.org/reports/ccus-in-clean-energy-transitions.
|
[39] |
蔡博峰, 李琦, 张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.
|
[40] |
蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径[J]. 中国人口·资源与环境, 2021, 31(1):7-14.
|
[41] |
中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R/OL]. 2019. http://h2cn.org.cn/publicati/215.html.
|
[42] |
BROWN T. Ammonia in China:change is coming[R]. 2019. https://www.ammoniaenergy.org/articles/ammonia-in-china-change-is-coming/.
|
[43] |
FASIHI M, WEISS R, SAVOLAINEN J, et al. Global potential of green ammonia based on hybrid PV-wind power plants[J]. Applied Energy, 2021, 294:116170.
|
[44] |
CHEN Q Q, GU Y, TANG Z Y, et al. Comparative environmental and economic performance of solar energy integrated methanol production systems in China[J]. Energy Conversion and Management, 2019, 187:63-75.
|
[45] |
LI J Y, MA X X, LIU H, et al. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes[J]. Journal of Cleaner Production, 2018, 185:299-308.
|
[46] |
YANG S, LIU Z Q, TANG Z Y, et al. Performance analysis of solar energy integrated with natural-gas-to-methanol process[J]. Energy Conversion and Management, 2017, 150:375-381.
|
[47] |
国家发展改革委. 国家重点节能低碳技术推广目录(2017年本,节能部分)[R]. 2018.
|
1. | 钱伟杰,黄连芝,马敏杰,李荧,郑炜. 组合工艺处理难降解化工废水的试验研究. 当代化工. 2024(01): 49-53 . ![]() | |
2. | 王博,张长安,赵利民,袁俊,宋永一. 基于掺硼金刚石电极的工业废水处理研究进展. 化工进展. 2024(01): 501-513 . ![]() | |
3. | 樊立萍,温越霄. SA-PQ-11/CF阳极提高MFC废水处理效果与发电性能. 精细化工. 2024(05): 1101-1107 . ![]() | |
4. | 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(S5): 85-88 . ![]() | |
5. | 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(05): 85-88 . ![]() | |
6. | 王唯,王冬晶,孙亮,王孟圆,李丽,刘宇,刘彬. MOFs材料声催化活性在工业废水处理中的应用进展. 工业水处理. 2023(01): 26-31 . ![]() | |
7. | 余水平,王元月,何友文,王先勇,邵鹏辉,徐翔涛. 高级氧化技术在工业废水深度处理中的应用进展. 江西化工. 2023(03): 7-12 . ![]() | |
8. | 黄思远. 印染废水芬顿污泥原位资源化利用. 净水技术. 2023(S1): 167-172+352 . ![]() | |
9. | 张任梁,陈莉,朱铭,田秉晖,梁峰,刘鹏宇. 基于新型电渗析将高盐废水资源化的研究进展. 现代化工. 2023(07): 25-29+34 . ![]() | |
10. | 范荣桂,关怀远,张玛格. 高铁酸钾-Fenton联合氧化处理制革综合废水. 化学研究与应用. 2023(06): 1475-1480 . ![]() | |
11. | 乔天宇,杨凯麟,冯明明,吴明敏,王国强,王维斌,高嘉蔚. 微电解-Fenton氧化联用技术在工业废水处理中的应用研究进展. 中国资源综合利用. 2023(07): 89-92 . ![]() | |
12. | 杨芳. 基于AOP高级氧化法的污水深度处理工艺设计优化研究. 粘接. 2023(10): 126-129 . ![]() | |
13. | 孙志洪,翟玉荣,蔡雅,辛国兴,刘琦,王磊,刘军普. 壳聚糖复合凝胶珠的制备及其在废水处理中的应用. 化学与粘合. 2023(06): 537-541+546 . ![]() | |
14. | 冯雷雷. 混凝-O_3/H_2O_2氧化联合工艺处理工业塑料生产废水的研究. 塑料助剂. 2023(04): 12-15+23 . ![]() | |
15. | 吕英俊,张健君,孟凡良,杨淑芳,彭峰. 南方某生物医药产业园集中废水处理厂工艺流程选择的思考. 给水排水. 2023(S1): 259-265 . ![]() | |
16. | 李轶,徐文筠,童林林,孙红波,万芬芬,张文龙. 面向低碳约束的工业园区水网络优化研究. 环境工程. 2023(11): 154-159 . ![]() | |
17. | 童敏. 强化生化技术在造纸废水处理中的应用研究. 造纸装备及材料. 2022(05): 150-152 . ![]() | |
18. | 蒋玉柱,惠贺龙,刘弘毅,丁广超,卢文义,李松庚. 印染污泥基生物炭吸附处理难降解有机废水. 环境工程. 2022(10): 32-39 . ![]() | |
19. | 王梦雨,邸永江,张浩,贾碧,田浩. SnS_2半导体光催化材料应用研究进展. 广州化工. 2022(23): 24-27 . ![]() |