Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIONG Fu-zhong, WEN Dong-hui. ADVANCES OF HIGHLY-EFFICIENT TECHNOLOGIES AND THEORIES FOR REFRACTORY INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 1-15,40. doi: 10.13205/j.hjgc.202111001
Citation: DONG Jin-chi, WENG Hui, PANG Ling-yun, CAI Bo-feng, LIU Hui, WANG Jin-nan, YANG Lu, XIA Chu-yu, CHEN Yang. MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 32-40. doi: 10.13205/j.hjgc.202110005

MARGINAL ABATEMENT COST CURVES AND MITIGATION TECHNOLOGIES FOR PETROCHEMICAL AND CHEMICAL INDUSTRIES IN CHINA

doi: 10.13205/j.hjgc.202110005
  • Received Date: 2021-05-23
    Available Online: 2022-01-26
  • Petrochemical and chemical industries are the pillar industries of China's national economy, as well as the industries with high energy consumption and emission. To achieve their low-carbon development, it's the key to balance the relationship between industry self-development and the goal of decarbonization. In this paper, we analyzed the key abatement technologies and the abatement costs for petrochemical and chemical industries through the expert-based and model-derived marginal abatement cost curve. The results indicated that the average abatement cost of petrochemical and chemical industries was RMB 298/t, with the potential of contributing the abatement of 0.44 billion tons CO2 in 2035 (account for 30% of total carbon emissions). Compared with energy conservation technologies, energy substitution have higher abatement cost, but also have higher abatement potential. In 2035, the application of energy substitution will account for 62% of the total carbon emission abatement. In this case, promoting the transformation of coal to renewable, clean energy will be the key to achieve carbon neutrality in the petrochemical and chemical industries.
  • [1]
    牛亚群, 董康银, 姜洪殿, 等. 炼油企业碳排放估算模型及应用[J]. 环境工程, 2017, 35(3):163-167.
    [2]
    WANG H K, LU X, DENG Y, et al. China's CO2 peak before 2030 implied from characteristics and growth of cities[J]. Nature Sustainability, 2019, 2(8):748-754.
    [3]
    何长全, 刘兰, 段宗志, 等. 生态文明环境下中国碳排放影响因素及减排措施分析[J]. 环境工程, 2015, 33(11):147-151.
    [4]
    WANG Z H, CHEN H T, HUO R, et al. Marginal abatement cost under the constraint of carbon emission reduction targets:an empirical analysis for different regions in China[J]. Journal of Cleaner Production, 2020, 249:119362.
    [5]
    KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental Science & Policy, 2011, 14(8):1195-1204.
    [6]
    PIZER W, ADLER M, ALDY J, et al. Using and improving the social cost of carbon[J]. Science, 2014, 346(6214):1189-1190.
    [7]
    PEARCE D. The social cost of carbon and its policy implications[J]. Oxford Review of Economic Policy, 2003, 19(3):362-384.
    [8]
    NORDHAUS W. Estimates of the social cost of carbon:concepts and results from the DICE-2013R model and alternative approaches[J]. Journal of the Association of Environmental and Resource Economists, 2014, 1(1/2):273-312.
    [9]
    PRICE R, HORNTON S, NELSON S. The Social Cost of Carbon and the Shadow Price of Carbon:What They Are, and How to Use Them in Economic Appraisal in the UK[R/OL]. Department for Environment, Food and Rural Affairs, 2007. https://www.gov.uk/government/publications/shadow-price-of-carbon-economic-appraisal-in-the-uk.
    [10]
    PINDYCK R S. Climate change policy:what do the models tell us?[J]. Journal of Economic Literature, 2013, 51(3):860-872.
    [11]
    STANTON F A A E A. Climate risks and carbon prices:revising the social cost of carbon[J]. Economics:The Open-Access, Open-Assessment E-Journal, 2012, 6:2012-10.
    [12]
    PINDYCK R S. The use and misuse of models for climate policy[J]. Review of Environmental Economics and Policy, 2017, 11(1):100-114.
    [13]
    PEZZEY J C V. Why the social cost of carbon will always be disputed[J]. WIREs Climate Change, 2019, 10(1):e558.
    [14]
    UK, Department of Energy and Climate Change. Carbon Valuation in UK policy Appraisal:a revised approach[R]. 2009.[https://www.gov.uk/government/publications/carbon-valuation-in-uk-policy-appraisal-a-revised-approach].
    [15]
    XIAO H, WEI Q P, WANG H L. Marginal abatement cost and carbon reduction potential outlook of key energy efficiency technologies in China's building sector to 2030[J]. Energy Policy, 2014, 69:92-105.
    [16]
    毛显强, 邢有凯, 胡涛, 等. 中国电力行业硫、氮、碳协同减排的环境经济路径分析[J]. 中国环境科学, 2012, 32(4):748-756.
    [17]
    刘胜强, 毛显强, 胡涛, 等. 中国钢铁行业大气污染与温室气体协同控制路径研究[J]. 环境科学与技术, 2012, 35(7):168-174.
    [18]
    DU L M, HANLEY A, WEI C. Estimating the marginal abatement cost curve of CO2 emissions in China:provincial panel data analysis[J]. Energy Economics, 2015, 48:217-229.
    [19]
    KESICKI F. Marginal abatement cost curves for policy making-expert-based vs. model-derived curves[J]. IAEE International Conference, 2011.
    [20]
    魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
    [21]
    VOGT-SCHILB A, HALLEGATTE S. Marginal abatement cost curves and the optimal timing of mitigation measures[J]. Energy Policy, 2014, 66:645-653.
    [22]
    DE CARA S, JAYET P A. Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement[J]. Ecological Economics, 2011, 70(9):1680-1690.
    [23]
    ELLERMAN A D, DECAUX A. Analysis of post-Kyoto CO2 emissions trading using marginal abatement curves[R/OL]. 1998. https://dspace.mit.edu/bitstream/handle/1721.1/3608/MITJPSPGC_Rpt40.pdf?sequence=1&origin=publication_detail.
    [24]
    CRIQUI P, MIMA S, VIGUIER L. Marginal abatement costs of CO2 emission reductions, geographical flexibility and concrete ceilings:an assessment using the POLES model[J]. Energy Policy, 1999, 27(10):585-601.
    [25]
    VERMONT B, DE CARA S. How costly is mitigation of non-CO2 greenhouse gas emissions from agriculture?:a meta-analysis[J]. Ecological Economics, 2010, 69(7):1373-1386.
    [26]
    NORDHAUS W D. The Cost of Slowing Climate Change:a Survey[J]. The Energy Journal, 1991, 12(1):37-65.
    [27]
    CHEN J M, YU B, WEI Y M. CO2 emissions accounting for the chemical industry:an empirical analysis for China[J]. Natural Hazards, 2019, 99(3):1327-1343.
    [28]
    YANEZ A E. Greenhouse gas mitigation strategies for the oil industry-bottom-up system analysis on the transition of the Colombian oil production and refining sector[R/OL]. University of Groningen, 2021.https://research.rug.nl/en/publications/greenhouse-gas-mitigation-strategies-for-the-oil-industry-bottom-.
    [29]
    UK, Department for Business, Energy and Industrial Strategy. Oil Refining Sector:Industrial Decarbonisation and Energy Efficiency Roadmap Action Plan[R/OL]. 2017. https://www.gov.uk/government/publications/industrial-decarbonisation-and-energy-efficiency-action-plans.
    [30]
    ACCENTURE. Decarbonizing Energy:From A to Zero[R/OL]. 2020. https://www.accenture.com/th-en/insights/energy/decarbonizing-energy-overview.
    [31]
    汪芳, 秦积舜, 周体尧, 等. 基于油藏CO2驱油潜力的CCUS源汇匹配方法[J]. 环境工程, 2019, 37(2):51-56.
    [32]
    王韶华, 于维洋, 张伟. 低碳经济的驱动因素及其驱动机理分析[J]. 环境工程, 2014, 32(12):143-147.
    [33]
    ZHOU W J, ZHU B, LI Q, et al. CO2 emissions and mitigation potential in China's ammonia industry[J]. Energy Policy, 2010, 38(7):3701-3709.
    [34]
    IEA. The Future of Hydrogen, IEA, Paris[R/OL]. 2019. https://www.iea.org/reports/the-future-of-hydrogen.
    [35]
    BP. Statistical Review of World Energy[R/OL]. 2020. https://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.
    [36]
    YANG X, XI X, GUO S, et al. Carbon Mitigation pathway evaluation and environmental benefit analysis of mitigation technologies in China's petrochemical and chemical industry[J]. Energies, 2018, 11(12):331-3345.
    [37]
    TAKHT RAVANCHI M, SAHEBDELFAR S. Carbon dioxide capture and utilization in petrochemical industry:potentials and challenges[J]. Applied Petrochemical Research, 2014, 4(1):63-77.
    [38]
    IEA. Special Report on Carbon Capture Utilisation and Storage[R/OL]. 2020. https://www.iea.org/reports/ccus-in-clean-energy-transitions.
    [39]
    蔡博峰, 李琦, 张贤,等. 中国二氧化碳捕集利用与封存(CCUS)年度报告(2021):中国CCUS路径研究[R]. 生态环境部环境规划院, 中国科学院武汉岩土力学研究所, 中国21世纪议程管理中心, 2021.
    [40]
    蔡博峰, 曹丽斌, 雷宇, 等. 中国碳中和目标下的二氧化碳排放路径[J]. 中国人口·资源与环境, 2021, 31(1):7-14.
    [41]
    中国氢能联盟. 中国氢能源及燃料电池产业白皮书[R/OL]. 2019. http://h2cn.org.cn/publicati/215.html.
    [42]
    BROWN T. Ammonia in China:change is coming[R]. 2019. https://www.ammoniaenergy.org/articles/ammonia-in-china-change-is-coming/.
    [43]
    FASIHI M, WEISS R, SAVOLAINEN J, et al. Global potential of green ammonia based on hybrid PV-wind power plants[J]. Applied Energy, 2021, 294:116170.
    [44]
    CHEN Q Q, GU Y, TANG Z Y, et al. Comparative environmental and economic performance of solar energy integrated methanol production systems in China[J]. Energy Conversion and Management, 2019, 187:63-75.
    [45]
    LI J Y, MA X X, LIU H, et al. Life cycle assessment and economic analysis of methanol production from coke oven gas compared with coal and natural gas routes[J]. Journal of Cleaner Production, 2018, 185:299-308.
    [46]
    YANG S, LIU Z Q, TANG Z Y, et al. Performance analysis of solar energy integrated with natural-gas-to-methanol process[J]. Energy Conversion and Management, 2017, 150:375-381.
    [47]
    国家发展改革委. 国家重点节能低碳技术推广目录(2017年本,节能部分)[R]. 2018.
  • Relative Articles

    [1]ZHANG Jinfeng, XU Chengbin, GUO Fei. A BIBLIOMETRIC STUDY OF ANTIMONY ECOLOGICAL ENVIRONMENTAL RISK AND WATER QUALITY BENCHMARKING TREND[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 207-214. doi: 10.13205/j.hjgc.202403026
    [2]LUO Fei, LIAO Man, LIN Ting, XI Xiuping, CHEN Mengfang, SONG Jing. STUDY ON RISK SCREENING VALUES AND INTERVENTION VALUES FOR SOIL CONTAMINATION OF DEVELOPMENT LAND IN SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 159-166. doi: 10.13205/j.hjgc.202408019
    [3]ZHANG Lei, LI Xuemei, WEI Yuan, FENG Chenglian, SU Hailei, LIU Yuxian, ZHAO Yanan, LI Feilong, GUO Fen, ZHANG Yuan, XUE Jingchuan. ENVIRONMENTAL OCCURRENCE AND ECOLOGICAL RISK ASSESSMENT OF PARABENS AND METABOLITES IN THE DONGJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 91-99. doi: 10.13205/j.hjgc.202404011
    [4]GAO Jingsi, HAN Huili, CHEN Na, NIE Jinxu, ZHU Jia, ZHOU Jianfeng. A REVIEW OF IRON-CARBON MICRO-ELECTROLYSIS IN TYPICAL INDUSTRIAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 56-64. doi: 10.13205/j.hjgc.202410008
    [5]ZHONG Yiwen, SU Wenxing, JIANG Shan, WANG Yinhong, LIU Wangrong, WU Genyi, ZENG Dong, CHEN Lei. MICROBIAL COMMUNITY SUCCESSION DURING LIQUID MANURE FERMENTATION AND ITS CORRELATION WITH ENVIRONMENTAL FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 145-153. doi: 10.13205/j.hjgc.202308018
    [6]LI Danlin, GUO Shuai, HUANG Rongmin, ZHANG Hao, CHENG Haoke. RISK ASSESSMENT OF EXTRANEOUS WATER IN SEWAGE SYSTEMS BASED ON INTEGRATED MONITORING OF WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 39-45. doi: 10.13205/j.hjgc.202311006
    [7]ZHANG Meng, ZHAO Yani, ZHANG Liling, WU Jingya, LI Shuping, ZHU Guangcan, SUN Liwei. COMPARISON OF CHARACTERISTICS OF MICROBIAL COMMUNITY STRUCTURE IN SEWAGE TREATMENT PLANTS OF HIGH ALTITUDE AREA AND LOW ALTITUDE AREA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 66-73. doi: 10.13205/j.hjgc.202203011
    [8]CHEN Weidong, WEN Donghui. ADVANCES IN SPATIAL-TEMPORAL DISTRIBUTION AND ASSEMBLY MECHANISMS OF MICROBIAL COMMUNITY IN WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 1-13,39. doi: 10.13205/j.hjgc.202208001
    [9]LIU Bin, HE Jie, LI Xueyan. CHARACTERISTICS OF SIMULTANEOUS TREATMENT OF NITROGEN AND PHOSPHORUS IN PYRITE BIOFILTER AND ITS MICROBIAL COMMUNITY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 32-37,138. doi: 10.13205/j.hjgc.202203006
    [10]LIU Xiaodong, YU Tianfei, AI Jiamin, LI Jing, ZHANG Baobao, JIANG Yingying, DENG Zhenshan. INFLUENCE OF PETROLEUM CONTAMINATION ON SOIL MICROBIAL COMMUNITY AND ISOLATION AND IDENTIFICATION OF OIL-DEGRADING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(7): 61-68. doi: DOI:10.13205/j.hjgc.202207009
    [11]XUE Zhen-kun, ZUO Rui, WANG Jin-sheng, CHEN Min-hua, MENG Li, JIN Chao. MICROORGANISM COMMUNITY STRUCTURE AND MICROBIOLOGICAL DETERIORATION IN HETEROGENEOUS SITES CONTAMINATED WITH PETROLEUM HYDROCARBON[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 188-196. doi: 10.13205/j.hjgc.202108026
    [12]SUN Guang-xi, TIAN Zhe, DING Ran, GAO Ying-xin, WANG Jun, ZHANG Yu, YANG Min. REVIEW OF ADVANCED TREATMENT TECHNOLOGIES FOR HIGH CONCENTRATION AND REFRACTORY INDUSTRIAL WASTEWATER FROM SOME TYPICAL INDUSTRIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 16-27,134. doi: 10.13205/j.hjgc.202111002
    [13]WEI Chao-hai, GUAN Xiang-hong, WEI Geng-rui, LI Ze-min, WEI Tuo, CHEN A-cong. THE NEXUS IMPORTANCE OF AQUEOUS SOLUTION PROPERTIES AND WATER POLLUTION CONTROL PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 28-40. doi: 10.13205/j.hjgc.202111003
    [14]SHAN Wei, WANG Yan, ZHENG Kai-kai, LI Ji. TECHNOLOGY COMPARISON AND ANALYSIS ON COD REMOVAL UPGRADING OF WASTEWATER TREATMENT PLANTS FOR HIGH PROPORTION OF INDUSTRY WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 32-37,24. doi: 10.13205/j.hjgc.202007005
    [18]Zhang Kefeng, Liu Qi, Zhang Qianwen, Yu Xiaodi, Wang Hongbo. EFFECT OF BULKING AGENT TYPE AND PROPORTION ON SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 45-48. doi: 10.13205/j.hjgc.201501011
  • Cited by

    Periodical cited type(19)

    1. 钱伟杰,黄连芝,马敏杰,李荧,郑炜. 组合工艺处理难降解化工废水的试验研究. 当代化工. 2024(01): 49-53 .
    2. 王博,张长安,赵利民,袁俊,宋永一. 基于掺硼金刚石电极的工业废水处理研究进展. 化工进展. 2024(01): 501-513 .
    3. 樊立萍,温越霄. SA-PQ-11/CF阳极提高MFC废水处理效果与发电性能. 精细化工. 2024(05): 1101-1107 .
    4. 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(S5): 85-88 .
    5. 杨恒,卜勇杰,曾康健,彭文庆,邓星星,管青军,周双,王卫军. 浙江某石矿废水高效净化试验研究. 非金属矿. 2024(05): 85-88 .
    6. 王唯,王冬晶,孙亮,王孟圆,李丽,刘宇,刘彬. MOFs材料声催化活性在工业废水处理中的应用进展. 工业水处理. 2023(01): 26-31 .
    7. 余水平,王元月,何友文,王先勇,邵鹏辉,徐翔涛. 高级氧化技术在工业废水深度处理中的应用进展. 江西化工. 2023(03): 7-12 .
    8. 黄思远. 印染废水芬顿污泥原位资源化利用. 净水技术. 2023(S1): 167-172+352 .
    9. 张任梁,陈莉,朱铭,田秉晖,梁峰,刘鹏宇. 基于新型电渗析将高盐废水资源化的研究进展. 现代化工. 2023(07): 25-29+34 .
    10. 范荣桂,关怀远,张玛格. 高铁酸钾-Fenton联合氧化处理制革综合废水. 化学研究与应用. 2023(06): 1475-1480 .
    11. 乔天宇,杨凯麟,冯明明,吴明敏,王国强,王维斌,高嘉蔚. 微电解-Fenton氧化联用技术在工业废水处理中的应用研究进展. 中国资源综合利用. 2023(07): 89-92 .
    12. 杨芳. 基于AOP高级氧化法的污水深度处理工艺设计优化研究. 粘接. 2023(10): 126-129 .
    13. 孙志洪,翟玉荣,蔡雅,辛国兴,刘琦,王磊,刘军普. 壳聚糖复合凝胶珠的制备及其在废水处理中的应用. 化学与粘合. 2023(06): 537-541+546 .
    14. 冯雷雷. 混凝-O_3/H_2O_2氧化联合工艺处理工业塑料生产废水的研究. 塑料助剂. 2023(04): 12-15+23 .
    15. 吕英俊,张健君,孟凡良,杨淑芳,彭峰. 南方某生物医药产业园集中废水处理厂工艺流程选择的思考. 给水排水. 2023(S1): 259-265 .
    16. 李轶,徐文筠,童林林,孙红波,万芬芬,张文龙. 面向低碳约束的工业园区水网络优化研究. 环境工程. 2023(11): 154-159 . 本站查看
    17. 童敏. 强化生化技术在造纸废水处理中的应用研究. 造纸装备及材料. 2022(05): 150-152 .
    18. 蒋玉柱,惠贺龙,刘弘毅,丁广超,卢文义,李松庚. 印染污泥基生物炭吸附处理难降解有机废水. 环境工程. 2022(10): 32-39 . 本站查看
    19. 王梦雨,邸永江,张浩,贾碧,田浩. SnS_2半导体光催化材料应用研究进展. 广州化工. 2022(23): 24-27 .

    Other cited types(32)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040123456
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.6 %FULLTEXT: 18.6 %META: 81.4 %META: 81.4 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.4 %其他: 17.4 %上海: 1.2 %上海: 1.2 %北京: 7.0 %北京: 7.0 %台州: 4.7 %台州: 4.7 %杭州: 1.2 %杭州: 1.2 %湖州: 1.2 %湖州: 1.2 %芒廷维尤: 23.3 %芒廷维尤: 23.3 %苏州: 1.2 %苏州: 1.2 %衢州: 1.2 %衢州: 1.2 %西宁: 40.7 %西宁: 40.7 %重庆: 1.2 %重庆: 1.2 %其他上海北京台州杭州湖州芒廷维尤苏州衢州西宁重庆

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (697) PDF downloads(28) Cited by(51)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return