Citation: | XIA Chu-yu, MA Dong, CAI Bo-feng, CHEN Bin, LIU Hui, YANG Lu, LV Chen. ANALYSIS OF CARBON EMISSIONS ABATEMENT TECHNOLOGY AND COST IN ROAD TRANSPORT SECTOR OF CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 50-56,63. doi: 10.13205/j.hjgc.202110007 |
[1] |
IEA. Tracking Transport 2020[R]. Paris, 2020.
|
[2] |
生态环境部. 《中国移动源环境管理年报(2020)》[R]. 北京, 2020.
|
[3] |
IEA. Net Zero by 2050 A Roadmap for the Global Energy Sector[R]. Paris,2021.
|
[4] |
陈诗一. 边际减排成本与中国环境税改革[J]. 中国社会科学, 2011(3):85-100.
|
[5] |
魏楚. 中国城市CO2边际减排成本及其影响因素[J]. 世界经济, 2014, 37(7):115-141.
|
[6] |
KESICKI F, STRACHAN N. Marginal abatement cost (MAC) curves:confronting theory and practice[J]. Environmental science & policy, 2011, 14(8):1195-1204.
|
[7] |
BRUNKE J C, BLESL M. Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs[J]. Journal of Cleaner Production, 2014, 82:94-111.
|
[8] |
HASANBEIGI A, MORROW W, MASANET E, et al. Energy efficiency improvement and CO2 emission reduction opportunities in the cement industry in China[J]. Energy Policy, 2013, 57:287-297.
|
[9] |
FAN Y, PENG B B, XU J H. The effect of technology adoption on CO2 abatement costs under uncertainty in China's passenger car sector[J]. Journal of Cleaner Production, 2017, 154:578-592.
|
[10] |
PENG B B, FAN Y, XU J H. Integrated assessment of energy efficiency technologies and CO2 abatement cost curves in China's road passenger car sector[J]. Energy Conversion and Management, 2016, 109:195-212.
|
[11] |
DU H B, LI Q, LIU X, et al. Costs and potentials of reducing CO2 emissions in China's transport sector:Findings from an energy system analysis[J]. Energy, 2021,234:121163.
|
[12] |
GOPAL A R, PARK W Y, WITT M, et al. Hybrid-and battery-electric vehicles offer low-cost climate benefits in China[J]. Transportation Research Part D:Transport and Environment, 2018, 62:362-371.
|
[13] |
蔡闻佳, 王灿, 陈吉宁. 中国公路交通业CO2排放情景与减排潜力[J]. 清华大学学报(自然科学版), 2007,47(12):2142-2145.
|
[14] |
杨方, 于雷, 宋国华, 等. 基于存活概率的动态车龄分布模型[J]. 中国安全科学学报, 2005, 15(6):24-27
,39.
|
[15] |
刘森, 朱向雷, 徐国强. 基于威布尔分布的轿车存活概率模型研究[J]. 产业与科技论坛, 2012,11(18):122-124.
|
[16] |
LIU F Q, ZHAO F H, LIU Z W, et al. The impact of purchase restriction policy on car ownership in china's four major cities[J]. Journal of advanced transportation, 2020.
|
[17] |
PENG B B, XU J H, FAN Y. Modeling uncertainty in estimation of carbon dioxide abatement costs of energy-saving technologies for passenger cars in China[J]. Energy Policy, 2018, 113:306-319.
|
[18] |
LI Y F, KIMURA S. Economic competitiveness and environmental implications of hydrogen energy and fuel cell electric vehicles in ASEAN countries:the current and future scenarios[J]. Energy Policy, 2021, 148:111980.
|
[19] |
ROSENBERG E, FIDJE A, ESPEGREN K A, et al. Market penetration analysis of hydrogen vehicles in Norwegian passenger transport towards 2050[J]. International Journal of Hydrogen Energy, 2010, 35(14):7267-7279.
|
[20] |
COUNCIL N R. Assessment of Fuel Economy Technologies for Light-duty Vehicles[M]. National Academies Press, 2011.
|
[21] |
ADMINISTRATION N H A T S. Preliminary Regulatory Impact Analysis:Corporate Average Fuel Economy for MY 2011-2015. Passenger Cars and Light Trucks[R]. Washington, D.C:U.S. Department of Transportation, 2008.
|
[22] |
中国汽车技术研究中心. 重型商用车辆第三阶段燃料消耗量限值标准研究报告[R]. 北京, 2016.
|
[23] |
工业和信息化部. 中国汽车燃料消耗量趋势年报[R]. 北京, 2016.
|