Citation: | QIAO Yu, YAN Zhen-fei, FENG Cheng-lian, LIU Na, LIAO Wei, HONG Ya-jun, LIU Da-qing, BAI Ying-chen. APPLICATIONS AND DIFFERENCES ANALYSIS OF SEVERAL TYPICAL MODELS IN SPECIES SENSITIVITY DISTRIBUTION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 85-92,109. doi: 10.13205/j.hjgc.202110012 |
[1] |
吴丰昌,冯承莲,张瑞卿,等. 我国典型污染物水质基准研究[J]. 中国科学:地球科学, 2012, 42(5):665-672.
|
[2] |
周启星. 环境基准研究与环境标准制定进展及展望[J]. 生态与农村环境学报, 2010, 26(1):1-8.
|
[3] |
SOLOMON K R, BAKER D B, RICHARDS R P, et al. Ecological risk assessment of atrazine in north american surface waters[J]. Environmental Toxicology and Chemistry, 1996, 15(1):31-76.
|
[4] |
陈丽红,张瑜,丁婷婷,等. 红霉素水生生物基准推导和对中国部分水体生态风险初步评估[J]. 生态环境学报, 2020, 29(8):1610-1616.
|
[5] |
ANZECC A. Australian and New Zealand Guidelines for Fresh and Marine Water Quality[R]. Australian and New Zealand environment and conservation council and agriculture and resource management council of Australia and New Zealand, Canberra, 2000:1-103.
|
[6] |
环境保护部. 淡水水生生物水质基准制定技术指南:HJ 831-2017[S].北京:环境保护部,2017:178.
|
[7] |
CANADIAN COUNCIL of RESOURCE and ENVIRONMENT MINISTERS (CCME). A Protocol for the Derivation of Water Quality Guidelines for the Protection of Aquatic life[R]. Ottawa:CCME, 2007.
|
[8] |
吴丰昌,冯承莲,曹宇静,等. 锌对淡水生物的毒性特征与水质基准的研究[J]. 生态毒理学报, 2011, 6(4):367-382.
|
[9] |
吴丰昌,冯承莲,曹宇静,等. 我国铜的淡水生物水质基准研究[J]. 生态毒理学报, 2011, 6(6):617-628.
|
[10] |
FENG C L, WU F C, ZHAO X L, et al. Water quality criteria research and progress[J]. Science China Earth Sciences, 2012, 55(6):882-891.
|
[11] |
STEPHAN C E, MOUNT D I, HANSEN D J, et al. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses[M]. Washington:US Environmental Protection Agency, 1985.
|
[12] |
TRAAS T P. Guidance Document on Deriving Environmental Risk Limits[R]. Bilthoven, the Netherlands:National institute for public health and the environment (RIVM), 2001.
|
[13] |
ECB. Technical Guidance Document on Risk Assessment-Part Ⅱ[R]. Italy, Ispra:Institute for Health and C onsumer Protection, 2003.
|
[14] |
Van V P, TRAAS T P, WINTERSEN A M, et al. ETX 2.0. A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data[J]. RIVM Rapport 601501028, 2005.
|
[15] |
NEWMAN M C, OWNBY D R, MEZIN L C A, et al. Applying species-sensitivity distributions in ecological risk assessment:Assumptions of distribution type and sufficient numbers of species[J]. Environmental Toxicology and Chemistry, 2000, 19(2):508-515.
|
[16] |
WAGNER C, LOKKE H. Estimation of ecotoxicological protection levels from NOEC toxicity data[J]. Water Research, 1991, 25(10):1237-1242.
|
[17] |
ALDENBERG T, SLOB W. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data[J]. Ecotoxicology and environmental safety, 1993, 25(1):48-63.
|
[18] |
SHAO Q X. Estimation for hazardous concentrations based on NOEC toxicity data:an alternative approach[J]. Environmetrics, 2000, 11(5):583-595.
|
[19] |
MOREIRA R A, MANSANO A D S, ROCHA O. The toxicity of carbofuran to the freshwater rotifer, Philodina roseola[J]. Ecotoxicology, 2015, 24(3):604-615.
|
[20] |
VAN STRAALEN N M. Threshold models for species sensitivity distributions applied to aquatic risk assessment for zinc[J]. Environmental Toxicology and Pharmacology, 2002, 11(3/4):167-172.
|
[21] |
BRATTIN W J, BARRY T M, CHIU N, et al. Monte carlo modeling with uncertain probability density functions[J]. Human and Ecological Risk Assessment:An International Journal, 1996, 2(4):820-840.
|
[22] |
BATLEY G E, VAN D R A, WAME M S J, et al. Technical Rationale for Changes to the Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants[R]. Australian Government Standing Council on Environment and Water, Canberra, 2014.
|
[23] |
FISHER R, VAN D R, BATLEY G, et al. Key Issues in the Derivation of Water Quality Guideline Values[R]. Australian Institute of Marine Science, 2019.
|
[24] |
MICHAEL W, BATLEY G E, VAN D R A, et al. Revised Method for Deriving Australian and New Zealand Water Quality Guideline Values for Toxicants:Prepared for the Revision of the Australian and New Zealand Guidelines for Fresh and Marine Water Quality[R]. Australian Government Department of Agriculture and Water Resources, 2018.
|
[25] |
FENG C L, LI H, YAN Z F, et al. Technical study on national mandatory guideline for deriving water quality criteria for the protection of freshwater aquatic organisms in China[J]. Journal of Environmental Management, 2019, 250:109539.
|
[26] |
LIU Q, XU X Q, ZENG J N, et al. Development of marine water quality criteria for inorganic mercury in china based on the retrievable toxicity data and a comparison with relevant criteria or guidelines[J]. Ecotoxicology, 2019, 28(4):412-421.
|
[27] |
DING T T, DU S L, ZHANG Y H, et al. Hardness-dependent water quality criteria for cadmium and an ecological risk assessment of the Shaying River Basin, China[J]. Ecotoxicology and environmental safety, 2020, 198:110666.
|
[28] |
张志霞,王斌,袁宏林,等. 运用物种敏感度分布法推导磺胺类药物的水质基准[J]. 环境科学与技术, 2016, 39(12):184-188.
|
[29] |
KOOIJMAN S. A safety factor for LC50 values allowing for differences in sensitivity among species[J]. Water Research, 1987, 21(3):269-276.
|
[30] |
POSTHUMA L, SUTER II G W, TRAAS T P. Species Sensitivity Distributions in Ecotoxicology[M]. Los Angeles:CRC Press, 2001:37-52.
|
[31] |
VAN STRAALEN N M, VAN RIJN J P. Ecotoxicological Risk Assessment of Soil Fauna Recovery from Pesticide Application[M]. New York:Reviews of Environmental Contamination and Toxicology, 1998:83-141.
|
[32] |
HALL JR L W, SCOTT M C, KILLEN W D J E T, et al. Ecological risk assessment of copper and cadmium in surface waters of chesapeake bay watershed[J]. Environmental Toxicology and Chemtry:An Internation Journal,1998, 17(6):1172-1189.
|
[33] |
BELANGER S, BARRON M, CRAIGC P, et al. Future needs and recommendations in the development of species sensitivity distributions:estimating toxicity thresholds for aquatic ecological communities and assessing impacts of chemical exposures[J]. Integrated Environmental Assessment and Management, 2017, 13(4):664-674.
|
[34] |
BELANGER S, CARR G J. SSDs revisited:Part ii-practical considerations in the development and use of application factors applied to species sensitivity distributions[J]. Environmental Toxicology and Chemistry, 2019, 38(7):1526-1541.
|
[35] |
WHEELER J R, GRIST E P M, LEUNG K M Y, et al. Species sensitivity distributions:data and model choice[J]. Marine Pollution Bulletin, 2002, 45(1/12):192-202.
|
[36] |
DUBOUDIN C, CIFFROY P, MAGAUD H. Effects of data manipulation and statistical methods on species sensitivity distributions[J]. Environmental Toxicology and Chemistry, 2004, 23(2):489-499.
|
[37] |
XU F L, LI Y L, WANG Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment[J]. Ecological Indicators, 2015,54:227-237.
|
[38] |
GERARD G, JRJ A, LUCA M, et al. Pan-European soil erosion risk assessment:The PESEA Map verson 1, October 2003[J]. Analytica Chimica Acta, 2004, 1(0):233-249.
|
[39] |
FENG C L, WU F C, MU Y S, et al. Interspecies correlation estimation-applications in water quality criteria and ecological risk assessment[J]. Environmental Science & Technology, 2013, 47(20):11382-11383.
|
[40] |
FENG C L, WU F C, Dyer S D, et al. Derivation of freshwater quality criteria for zinc using interspecies correlation estimation models to protect aquatic life in China[J]. Chemosphere, 2013, 90(3):1177-1183.
|
[41] |
冯永亮. 物种敏感度分布的模型选择和最小样本量研究[J]. 安全与环境学报, 2020, 20(5):1990-2000.
|
[42] |
WANG Y, WU F C, GIESY J P, et al. Non-parametric kernel density estimation of species sensitivity distributions in developing water quality criteria of metals[J]. Environmental Science and Pollution Research, 2015, 22(18):13980-13989.
|
[43] |
刘克. 我国主要小麦产地土壤镉和铅的安全阈值研究[D]. 西安:西北农林科技大学, 2016.
|
[44] |
蒋丹烈,胡霞林,尹大强. 应用物种敏感性分布法对太湖沉积物中多环芳烃的生态风险分析[J]. 生态毒理学报, 2011, 6(1):60-66.
|
[45] |
董明明,牟力言,秦莉,等. 物种敏感性分布法拟合函数的拟合优度评价[J]. 农业环境科学学报, 2021, 40(3):544-551.
|
[46] |
王颖,冯承莲,穆云松,等. 非参数核密度估计在铜、银物种敏感度分布中的应用[J]. 中国环境科学, 2017, 37(4):1548-1555.
|
[47] |
SHAPIRO S S, WILK M B. An analysis of variance test for normality (complete samples)[J]. Biometrika, 1965, 52(3/4):591-611.
|
[48] |
AHSANULLAHA M, KIBRIA B M G, SHAKIL M. Normal Distribution[M]. Normal and Student'st Distributions and Their Applications. Atlantis Press, Paris, 2014:7-50.
|
[49] |
BOX J F. Guinness, Gosset, Fisher, and small samples[J]. Statistical science, 1987,2(1):45-52.
|
[50] |
MALTBY L, BLAKE N, BROCKB T C M, et al. Insecticide species sensitivity distributions:importance of test species selection and relevance to aquatic ecosystems[J]. Environmental Toxicology and Chemistry:An International Journal, 2005,24(2):379-388.
|
[51] |
于洋,孙月静. 对数正态分布参数的最大似然估计[J]. 九江学院学报, 2007(6):55-57.
|
[52] |
ALDENBERG T, JAWORSKA J S. Uncertainty of the hazardous concentration and fraction affected for normal species sensitivity distributions[J]. Ecotoxicology and Environmental Safety, 2000, 46(1):1-18.
|
[53] |
CROW E L, SHIMIZU K. Lognormal Distributions[M]. New York:Marcel Dekker, 1987.
|
[54] |
SOLOMON K R, GIDDINGS J M, MAUND S J. Probabilistic risk assessment of cotton pyrethroids:Ⅰ. Distributional analyses of laboratory aquatic toxicity data[J]. Environmental Toxicology and Chemistry:An International Journal, 2001, 20(3):652-659.
|
[55] |
艾舜豪,李霁,王晓南,等. 太湖双酚A的水质基准研究及风险评价[J]. 环境科学研究, 2020, 33(3):581-588.
|
[56] |
VERHULST P F. Notice sur la loi que la population suit dans son accroissement[J]. Corresp. Math. Phys, 1838, 10:113-126.
|
[57] |
VERHULST P F. Recherches mathématiques sur la loi d'accroissement de la population[J]. Journal Des Économistes, 1845,12:276.
|
[58] |
LIN G D, HU C Y. On characterizations of the logistic distribution[J]. Journal of Statistical Planning and Inference, 2008, 138(4):1147-1156.
|
[59] |
BALAKRISHNAN N. Handbook of the Logistic Distribution[M]. Los Angeles:CRC Press, 1991:237-263.
|
[60] |
张烨. Ⅳ型广义Logistic分布的统计推断理论方法及应用[D]. 北京:北京工业大学, 2019.
|
[61] |
BENNETT S. Log-logistic regression models for survival data[J]. Journal of the Royal Statistical Society:Series C (Applied Statistics), 1983, 32(2):165-171.
|
[62] |
O'QUIGLEY J, STRUTHERS L. Survival models based upon the logistic and log-logistic distributions[J]. Computer Programs in Biomedicine, 1982, 15(1):3-11.
|
[63] |
KANTAM R R L, SRINIVASA RAO G, SRIRAM B. An economic reliability test plan:log-logistic distribution[J]. Journal of Applied Statistics, 2006, 33(3):291-296.
|
[64] |
雷炳莉,黄圣彪,王子健. 生态风险评价理论和方法[J]. 化学进展, 2009, 21(增刊1):350-358.
|
[65] |
FORBES V E, CALOW P. Species sensitivity distributions revisited:a critical appraisal[J]. Human and Ecological Risk Assessment:An International Journal, 2002, 8(3):473-492.
|
[66] |
ZHENG X, ZANG W C, YANG Z G, et al. Species sensitivity analysis of heavy metals to freshwater organisms[J]. Ecotoxicology, 2015,24(7):1621-1631.
|
[67] |
TADIKAMALLA P R. A look at the Burr and related distributions[J]. International Statistical Review/Revue Internationale de Statistique, 1980:337-344.
|
[68] |
陈瑾,刘奕梅,张建英. 基于物种敏感性分布的微囊藻毒素与氮污染水体生态风险评估[J]. 应用生态学报, 2014, 25(4):1171-1180.
|
[69] |
HOSE G C, VAN DEN BRINK P J. Confirming the species-sensitivity distribution concept for endosulfan using laboratory, mesocosm, and field data[J]. Archives of Environmental Contamination and Toxicology, 2004, 47(4):511-520.
|
[70] |
王印,王军军,秦宁,等. 应用物种敏感性分布评估DDT和林丹对淡水生物的生态风险[J]. 环境科学学报, 2009, 29(11):2407-2414.
|
[71] |
曾勇,孙霄,赖雨薇,等. 基于物种敏感性分布的多环芳烃水生态系统风险评价方法与应用[J]. 生态毒理学报, 2020, 15(5):235-243.
|
[72] |
VERSTEEG D J, BELANGER S E, CARR G J. Understanding single-species and model ecosystem sensitivity:data-based comparison[J]. Environmental Toxicology and Chemistry:An International Journal, 1999, 18(6):1329-1346.
|
[73] |
CALDWELL D J, MASTROCCO F, HUTCHINSON T H, et al. Derivation of an aquatic predicted no-effect concentration for the synthetic hormone, 17α-ethinyl estradiol[J]. Environmental Science & Technology, 2008, 42(19):7046-7054.
|
[74] |
金小伟,王业耀,王子健. 淡水水生态基准方法学研究:数据筛选与模型计算[J]. 生态毒理学报, 2014, 9(1):1-13.
|
[75] |
关于发布国家生态环境基准《淡水水生生物水质基准-镉》(2020年版)及其技术报告的公告[R]. 生态环境部, 2020.
|
[76] |
SCHWARZ C J, TILLMANNS A R. Improving statistical methods to derive species sensitivity distributions[J]. Province of British Columbia:Victoria, BC, Canada, 2019.
|
[77] |
DUBOUDIN C, CIFFROY P, MANGAUD H. Acute-to-chronic species sensitivity distribution extrapolation[J]. Environmental Toxicology and Chemistry:An International Journal, 2004, 23(7):1774-1785.
|