Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013
Citation: LU Yao, YANG Jie, SHAO Zhi-juan, ZHU Cong-cong. PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 93-100. doi: 10.13205/j.hjgc.202110013

PM2.5 ROBUST PREDICTION BASED ON STAGED TEMPORAL ATTENTION NETWORK

doi: 10.13205/j.hjgc.202110013
  • Received Date: 2020-11-28
    Available Online: 2022-01-26
  • The forecast of PM2.5 concentration plays an important role in air pollution control and improvement of environmental quality. Affected by multiple factors such as changes in meteorological conditions and air pollutants emissions, the PM2.5 forecast was usually susceptible to sudden changes and noise data. Therefore, in-depth exploration of the PM2.5 concentration change law and modeling robust prediction models have become key steps in this task. Based on the analysis of the correlation between meteorological conditions and atmospheric pollutants on PM2.5, a staged temporal-attention network (STAN) was proposed. This method combined a multi-stage attention module and a recurrent neural network (RNN) to model the cross-influence of meteorological factors and atmospheric pollutants on PM2.5 concentration. Statistical analysis of the absolute error values of the prediction results of Beijing, Shanghai, and Guangzhou showed the following results:1) compared with the widely used support vector machine (SVM), long short-term memory (LSTM), and multilayer perceptron (MLP), the performance of the proposed method increased more than 10%. 2) compared with the latest fusion model U-net, the proposed STAN still achieved a decrease in the error of 7%. Taking Beijing's winter forecast results as an example for statistical analysis, the fitting coefficient between the predicted value of STAN and the measured value could reach 95.2%. In the robustness analysis, it was found that the error increased by only 9.3% when the proposed method ran on data with 10% noise. The above results proved that the combination of the attention mechanism and the temporal learning module could deeply mine the change law of PM2.5 and suppress noise data. It also showed that the STAN could achieve the robust prediction of PM2.5 concentration.
  • [1]
    张西雅,扈海波.基于多源数据的北京地区PM2.5暴露风险评估[J].北京大学学报(自然科学版),2018,54(5):1103-1113.
    [2]
    CHAK K C, YAO X H. Air pollution in mega cities in China[J]. Atmospheric Environment,2008,42(1):1-12.
    [3]
    顾芳婷,胡敏,王渝,等.北京2009-2010年冬、春季PM2.5污染特征[J].中国环境科学, 2016,36(9):2578-2584.
    [4]
    陈熙勐,张皓旻,顾万清,等.我国PM2.5主要成分及对人体健康危害研究进展[J].中华保健医学杂志,2019,21(1):83-85.
    [5]
    于淼,郭立群,李秋爽,等.PM2.5暴露下皮肤损伤评价方法研究进展[J].环境与职业医学,2019,36(9):869-873

    ,878.
    [6]
    段肖肖,刘思秀.PM2.5致病机制的研究进展[J].复旦学报(医学版),2020,47(4):605-614.
    [7]
    吴少伟, 邓芙蓉.大气PM2.5与健康:从暴露、危害到干预的系统研究进展[J].中国药理学与毒理学杂志, 2016, 30(8):797-801.
    [8]
    王庚辰, 王普才.中国PM污染现状及其对人体健康的危害[J]. 科技导报, 2014,32(26):72-78.
    [9]
    KIM Y, MANLEY J, RADOIAS V. Medium-and long-term consequences of pollution on labor supply:evidence from Indonesia[J]. IZA Journal of Labor Economics, 2017,6(1):5.
    [10]
    BRAITHWAITE I, ZHANG S, KIRKBRIDE J B,et al.Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk:a systematic review and meta-analysis[J]. Environmental Health Perspectives,2019, 127(12):126002.
    [11]
    KAN H D, CHEN R J, TONG S L. Ambient air pollution, climate change, and population health in China[J].Environment International,2012, 42:10-19.
    [12]
    陈波,鲁绍伟,李少宁.北京城市森林不同天气状况下PM2.5浓度变化[J]. 生态学报, 2016,36(5):1391-1399.
    [13]
    王晓飞,王波,陆玉玉,等.基于Prophet-LSTM模型的PM2.5浓度预测研究[J].软件导刊,2020,19(3):133-136.
    [14]
    王黎明,吴香华,赵天良,等.基于距离相关系数和支持向量机回归的PM2.5浓度滚动统计预报方案[J].环境科学学报,2017, 37(4):1268-1276.
    [15]
    李建新,刘小生,刘静,等.基于MRMR-HK-SVM模型的PM2.5浓度预测[J].中国环境科学,2019,39(6):2304-2310.
    [16]
    陈菊芬,李勇.基于多模态支持向量回归的PM2.5浓度预测[J].环境工程,2019,37(1):122-126

    ,34.
    [17]
    宋国君,国潇丹,杨啸,等.沈阳市PM2.5浓度ARIMA-SVM组合预测研究[J].中国环境科学,2018,38(11):4031-4039.
    [18]
    赵文芳,林润生,唐伟,等.基于深度学习的PM2.5短期预测模型[J].南京师大学报(自然科学版),2019,42(3):32-41.
    [19]
    黄婕,张丰,杜震洪,等.基于RNN-CNN集成深度学习模型的PM2.5小时浓度预测[J].浙江大学学报(理学版),2019,46(3):370-379.
    [20]
    鲍艳磊,田冰,胡引翠,等.基于混合效应模型的京津冀地区PM2.5数值模拟[J].环境污染与防治,2020,42(3):268-274.
    [21]
    黄俊,王超群,周宝琴,等.广州PM2.5污染特征及与气象因子的关系分析[J].环境污染与防治,2020,42(2):176-181

    ,186.
    [22]
    李定,张文生.面向群体行为识别的注意力池化机制[J].中国科学:信息科学,2021,51(3):399-412.
    [23]
    徐少伟,秦品乐,曾建朝,等.基于注意力机制的两阶段纵膈淋巴结自动分割算法[J].计算机应用,2021,41(2):556-562.
    [24]
    郭旭超,唐詹,刁磊,等.基于部首嵌入和注意力机制的病虫害命名实体识别[J].农业机械学报,2020,51(增刊2):335-343.
    [25]
    SANTOS C, MING T, BING X, et al. Attentive pooling networks[J]. 2016.
    [26]
    WILLIAMS R J,ZIPSER D.A learning algorithm for continually running fully recurrent neural networks[J]. Neural Computation, 1998,1(2).
    [27]
    HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[J]. Computer Science, 2012,3(4):212-223.
    [28]
    HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9(8):1735-1780.
    [29]
    RUCK D W,ROGERS S K,KABRISKY M,et al. The multilayer perceptron as an approximation to a Bayes optimal discriminant function[J]. IEEE transactions on neural networks,1990,1(4):296-298.
    [30]
    史晓涛,刘建丽,骆玉荣. 一种抗噪音的支持向量机学习方法[C]//全国第19届计算机技术与应用(CACIS)学术会议论文集(下册),2008:5.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]HOU Yifan, LIU Lianhua, YANG Wenjin, LIAN Zhongmin. AN ANALYSIS OF RESEARCH TRENDS ABOUT PHTHALATE ESTERS POLLUTION IN AQUATIC ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 60-69. doi: 10.13205/j.hjgc.202407006
    [3]YUAN Xusheng, MENG Bangbang, HUANG Hui, YUE Bo, WU Haixia. ANALYSIS OF UTILIZATION AND DISPOSAL METHODS OF TYPICAL RURAL SOLID WASTE IN CHINA BASED ON ITS CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 216-221. doi: 10.13205/j.hjgc.202303029
    [4]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [5]TAI Dezhi, YU Jixin, ZHANG Hua, ZENG Honghu, SUN Xiaojie, LU Ze. FULVIC ACID SPECTRAL CHARACTERISTICS DURING COMPOSTING OF BIOLEACHING SLUDGE AND DIFFERENT MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 119-128. doi: 10.13205/j.hjgc.202303016
    [6]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [7]ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015
    [8]QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007
    [9]JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012
    [10]XU Desheng, YANG Ke, DUAN Wei. VISUAL ANALYSIS OF CARBON EMISSION IN IRON & STEEL INDUSTRY BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 207-215. doi: 10.13205/j.hjgc.202201030
    [11]ZHAO Shan, GUO Xue-bin, YANG Xiao-fang, WANG Dong-sheng. RESEARCH ON VOLATILE SULFIDE (VSC) AND AMMONIA EMISSION LAW IN PROCESS OF MUNICIPAL SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 82-88. doi: 10.13205/j.hjgc.202102013
    [12]ZHANG Chuan-yan, XI Bei-dou, ZHANG Qiang, BAI Si-cong, ZHAO Xin-yu. APPLICATION STATUS AND PROSPECT OF COMPOST IN SOIL REMEDIATION AND QUALITY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 176-186. doi: 10.13205/j.hjgc.202109025
    [13]ZHAO Xiu-yun, ZHAO Xin-yu, YANG Jin-jin, LI Shao-kang, LU Xiang-xin, LI Xiang. RESEARCH PROGRESS ON LIGNIN DEGRADATION MECHANISM AND INFLUENCING FACTORS DURING COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 128-136. doi: 10.13205/j.hjgc.202106019
    [14]CHE Yue-chi, YAN Bei-bei, WANG Xu-tong, CHEN Guan-yi, DAN Zeng, MENG De-an. RESEARCH PROGRESS OF TECHNICAL OPTIMIZATION OF SEWAGE SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 164-173. doi: 10.13205/j.hjgc.202104025
    [15]YE Zhao-yong, YANG Yu, HOU Li-an. HOTSPOTS AND TRENDS OF GROUNDWATER RELATED RESEARCHES NEAR LANDFILLS:VISUAL ANALYSIS BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 65-71. doi: 10.13205/j.hjgc.202106011
    [16]YAO Quan-wei, ZHANG Jun, YAN Qin-ying, WANG Dun-qiu, XI Bei-dou. MAIN FACTORS ON DISSIPATION OF TYPICAL FLUOROQUINOLONES IN SEWAGE SLUDGE COMPOST DURING MESOPHILIC AND THERMOPHILIC PHASES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 200-207. doi: 10.13205/j.hjgc.202009032
    [18]Hao Yidang, Wu Long, Shen Ping, Li Shiqi. PRECISE REDUCTION EXPERIMENT STUDY OF BAYER RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 100-104. doi: 10.13205/j.hjgc.201501023
    [19]Xia Bingbin Wang Feng Yang Haizhen. THE PREPARATION AND COMPONENT ANALYSIS OF WOOD VINEGAR BASED ON MEDICAL WASTE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 112-116. doi: 10.13205/j.hjgc.201501026
  • Cited by

    Periodical cited type(10)

    1. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 .
    2. 陈颖,王新雨,徐秀丽,蔡璐,郑国砥,王侃. 添加复合酶对污泥生物干化有机质降解及产热的影响研究. 宁波大学学报(理工版). 2024(03): 88-95 .
    3. 汤连生,陈洋,曾显帅,程子华,丁威涯. 聚合氯化铝预处理污泥联合脱水有效性及机理. 中山大学学报(自然科学版)(中英文). 2024(04): 37-46 .
    4. 吴曰丰,池艳峰,张露,江帅,杨锡刚,赵旭远. 堆存市政污泥深度脱水及其重金属稳定化效果研究. 环境工程技术学报. 2023(01): 248-254 .
    5. 于艳,于晓丹. 基于臭气空间分布特性的城市污水除臭仿真. 计算机仿真. 2023(05): 530-534 .
    6. 张佳宝,孟庆杰,郑怀礼,康旭,孙蕾,钟正,杨柳崴. 双氧水与絮凝药剂联用改善市政污泥脱水性能的研究. 广东化工. 2022(21): 87-90+95 .
    7. 赵旭远,张露,冒小丹,洪国军,江帅. 堆存污泥深度脱水及其干化泥饼焚烧特性研究. 环境科学研究. 2021(04): 1015-1022 .
    8. 冯力. 超声波联合化学调理改善污泥脱水性能研究及应用. 节能与环保. 2021(05): 98-99 .
    9. 刘婷娇,吴春山. 污泥脱水预处理技术研究述评. 海峡科学. 2020(03): 43-46 .
    10. 李良雪. 提高污水处理厂剩余污泥脱水性能. 建材与装饰. 2019(05): 109-110 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.9 %FULLTEXT: 12.9 %META: 87.1 %META: 87.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.3 %其他: 18.3 %China: 0.7 %China: 0.7 %上海: 1.5 %上海: 1.5 %东莞: 1.5 %东莞: 1.5 %临汾: 0.4 %临汾: 0.4 %临沂: 0.4 %临沂: 0.4 %丽水: 1.1 %丽水: 1.1 %北京: 3.7 %北京: 3.7 %南京: 4.9 %南京: 4.9 %天水: 0.4 %天水: 0.4 %天津: 3.4 %天津: 3.4 %宣城: 1.1 %宣城: 1.1 %巴音郭楞: 0.7 %巴音郭楞: 0.7 %常州: 0.4 %常州: 0.4 %常德: 1.1 %常德: 1.1 %广州: 1.5 %广州: 1.5 %张家口: 1.9 %张家口: 1.9 %德黑兰: 6.7 %德黑兰: 6.7 %惠州: 0.4 %惠州: 0.4 %成都: 1.5 %成都: 1.5 %扬州: 0.4 %扬州: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.4 %朝阳: 0.4 %来宾: 0.4 %来宾: 0.4 %杭州: 0.7 %杭州: 0.7 %柳州: 0.7 %柳州: 0.7 %武汉: 0.4 %武汉: 0.4 %济南: 0.7 %济南: 0.7 %济源: 0.7 %济源: 0.7 %温州: 0.4 %温州: 0.4 %湖州: 1.1 %湖州: 1.1 %漯河: 1.1 %漯河: 1.1 %盐城: 0.7 %盐城: 0.7 %石家庄: 2.2 %石家庄: 2.2 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 22.0 %芒廷维尤: 22.0 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 4.5 %西宁: 4.5 %西安: 1.9 %西安: 1.9 %贵阳: 0.7 %贵阳: 0.7 %运城: 2.6 %运城: 2.6 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %长沙: 0.7 %长沙: 0.7 %青岛: 1.9 %青岛: 1.9 %其他China上海东莞临汾临沂丽水北京南京天水天津宣城巴音郭楞常州常德广州张家口德黑兰惠州成都扬州昆明晋城朝阳来宾杭州柳州武汉济南济源温州湖州漯河盐城石家庄绵阳芒廷维尤芝加哥西宁西安贵阳运城遵义邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (195) PDF downloads(9) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return