Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XIE Chun-bo, QUAN Meng-fan, CAO Zhi-xiang, WANG Yi, SUN Jian-xin, WANG Xu. IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014
Citation: XIE Chun-bo, QUAN Meng-fan, CAO Zhi-xiang, WANG Yi, SUN Jian-xin, WANG Xu. IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 101-109. doi: 10.13205/j.hjgc.202110014

IMPROVEMENT OF FUME CAPTURE EFFICIENCY OF SIDE SUCTION HOOD WITH PARALLEL-FLOW SUPPLY AIR

doi: 10.13205/j.hjgc.202110014
  • Received Date: 2020-11-02
    Available Online: 2022-01-26
  • In practical engineering, because the exhaust hood was directly connected with the dust removal system, the size and flow of the exhaust hood were not easy to change once determined. When the actual exhaust air volume was much smaller than the exhaust air volume designed by the design method, it was difficult to obtain the optimal design parameters by using the traditional design method. Therefore, reasonable design of the size and flow of air supply outlet under the determined the form and flow of exhaust hood have strong practical significance. In this paper, numerical simulation was used to compare the flow field and the capture of pollutants under different forms of side suction exhaust hood and supply air device. On this basis, the air supply inlet were added, and the capture characteristics of different air supply flow rate on the pollutants were compared under the the constant exhaust flow. In addition, the effects of different air supply terminal devices on the capture of pollutants were studied. The results showed that movable exhaust hood and rotating open and closed exhaust hood could effectively improve the capture efficiency of pollutants. On this basis, the capture efficiency of pollutant could be improved by using air supply inlet, compared with using the exhaust hood alone. It was found that when the exhaust flow of the exhaust hood in the actual project was determined, the ratio of the exhaust flow should be adjusted on the premise that the supply air flow could effectively transport pollutants to the exhaust outlet. Finally, it was found that using parallel flow air supply device could improve the uniformity of air supply, improve the capture efficiency of exhaust hood. The results of the present study could provide certain guidance for the transformation and design of the push pull ventilation device in practical engineering.
  • [1]
    刘大钧. 基于实测的铅锌冶炼业环境防护距离研究[D]. 合肥:合肥工业大学,2015.
    [2]
    HUANG Y Q, WANG Y, LIU L, et al. Performance of constant exhaust ventilation for removal of transient high-temperature contaminated airflows and ventilation-performance comparison between two local exhaust hoods[J]. Energy and Buildings, 2017, 154:207-216.
    [3]
    HAMA G M. Supply and exhaust ventilation for metal pickling operations[J]. Air Condition, Heat and Ventilation, 1957, 54:61-63.
    [4]
    CHEM M J, MA, C H. Numerical investigation and recommendations for push-pull ventilation systems[J]. Journal of Occupational and Environmental Hygiene, 2007, 4:184-197.
    [5]
    MARZAL F, GONZALES E, MINANA A, et al. Influence of push element geometry on the capture efficiency of push-pull ventilation systems in surface Treatment Tanks[J]. The Annals of Occupational Hygiene, 2008, 28:405-411.
    [6]
    LIU L, DAI J, YANG J, et al. Intelligent simulation experimental study on influence of air velocity of air supply hood and exhaust hood with vertical push-pull ventilation[J]. Journal of Intelligent and Fuzzy Systems, 2019, 37(4):4819-4826.
    [7]
    WU X, LIU L D, LUO X W, et al. Study on flow field characteristics of the 90° rectangular elbow in the exhaust hood of a uniform push-pull ventilation device[J]. International Journal of Environmental Research and Public Health, 2018, 15(12).
    [8]
    WANG Y, ZOU Y, YANG Y, et al. Movement and control of evaporating droplets released from an open surface tank in the push-pull ventilation system[J]. Building Simulation, 2016, 9(4):443-457.
    [9]
    CAO Y X, WANG Y, LI C C. A field measurement study of a parallel flow push pull system for industrial ventilation applications[J]. International Journal of Ventilation, 2016, 15:167-181.
    [10]
    WANG Y, QUAN M F, ZHOU Y, et al. Experimental study on the flow field and economic characteristics of parallel push-pull ventilation system[J]. Energy and Built Environment, 2020, 1:393-403.
    [11]
    HAYASHI T. Industrial ventilation[M]. Beijing:China Architecture and Building Press, 1986.
    [12]
    GOODFELLOW H, THTI E. Industrial ventilation design guidebook[M]. Canada:Academic Press, 2001.
    [13]
    YE X, KANG Y M, YANG F, et al. Comparison study of contaminant distribution and indoor air quality in large-height spaces between impinging jet and mixing ventilation systems in heating mode[J]. Building and Environment, 2019, 160:106159.
    [14]
    BATCHELOR G K. An Introduction to Fluid Dynamics[M]. UK:Cambridge, 2000.
    [15]
    ROUAUD O, HAVET M. Computation of the airflow in a pilot scale clean environment using k-ε turbulence models[J]. International Journal of Refrigeration, 2002, 25:351-361.
    [16]
    王福军.计算流体动力学分析——CFD软件原理与应用[M]. 北京:清华大学出版社, 2004.
    [17]
    ZHOU Y, WANG M Y, WANG Y, et al. Development of self-label method to distinguish supply air from ambient air without tracer in numerical simulations[J]. Building and Environment, 2018, 145:223-233.
    [18]
    MACLNNES M, BRACCO F V. Stochastic particle dispersion modeling and the tracer particle limit[J]. Physics of Fluids, 1992, 4:2809-2824.
    [19]
    DUAN M J, WANG Y, GAO D, et al. Modeling dispersion mode of high-temperature particles transiently produced from industrial processes[J]. Building and Environment, 2017, 126:457-470.
    [20]
    孙一坚. 简明通风设计手册[M]. 北京:中国建筑工业出版社, 1997.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]HOU Yifan, LIU Lianhua, YANG Wenjin, LIAN Zhongmin. AN ANALYSIS OF RESEARCH TRENDS ABOUT PHTHALATE ESTERS POLLUTION IN AQUATIC ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 60-69. doi: 10.13205/j.hjgc.202407006
    [3]YUAN Xusheng, MENG Bangbang, HUANG Hui, YUE Bo, WU Haixia. ANALYSIS OF UTILIZATION AND DISPOSAL METHODS OF TYPICAL RURAL SOLID WASTE IN CHINA BASED ON ITS CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 216-221. doi: 10.13205/j.hjgc.202303029
    [4]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [5]TAI Dezhi, YU Jixin, ZHANG Hua, ZENG Honghu, SUN Xiaojie, LU Ze. FULVIC ACID SPECTRAL CHARACTERISTICS DURING COMPOSTING OF BIOLEACHING SLUDGE AND DIFFERENT MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 119-128. doi: 10.13205/j.hjgc.202303016
    [6]LIU Haizhu, BAI Junhong, WANG Yaqi, ZHANG Ling, LIU Zhe. RESEARCH PROGRESS AND HOTSPOT ANALYSIS OF SEDIMENT MICROPLASTICS BASED ON CITESPACE LITERATURE METROLOGY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 42-50. doi: 10.13205/j.hjgc.202301006
    [7]ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015
    [8]QU Yang, ZHU Weibing, CHANG Yanqing, WU Yuan, PENG Mingguo, GU Xiaotao, SUN Rong. A PILOT-SCALE TEST OF DANO DYNAMIC COMPOSTING OF SOLID RESIDUE FROM FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 46-52,104. doi: 10.13205/j.hjgc.202212007
    [9]JIA Kaixue, XU Shaoqi, WEI Zimin, CHEN Wenjie, ZHAN Yabin, SHI Xiong, LI Ji, WEI Yuquan. REVIEW ON PHOSPHORUS FRACTIONS TRANSFORMATION IN COMPOSTING ENHANCED BY PHOSPHORUS-SOLUBILIZING MICROORGANISMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 89-97. doi: 10.13205/j.hjgc.202212012
    [10]XU Desheng, YANG Ke, DUAN Wei. VISUAL ANALYSIS OF CARBON EMISSION IN IRON & STEEL INDUSTRY BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 207-215. doi: 10.13205/j.hjgc.202201030
    [11]ZHAO Shan, GUO Xue-bin, YANG Xiao-fang, WANG Dong-sheng. RESEARCH ON VOLATILE SULFIDE (VSC) AND AMMONIA EMISSION LAW IN PROCESS OF MUNICIPAL SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 82-88. doi: 10.13205/j.hjgc.202102013
    [12]ZHANG Chuan-yan, XI Bei-dou, ZHANG Qiang, BAI Si-cong, ZHAO Xin-yu. APPLICATION STATUS AND PROSPECT OF COMPOST IN SOIL REMEDIATION AND QUALITY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 176-186. doi: 10.13205/j.hjgc.202109025
    [13]ZHAO Xiu-yun, ZHAO Xin-yu, YANG Jin-jin, LI Shao-kang, LU Xiang-xin, LI Xiang. RESEARCH PROGRESS ON LIGNIN DEGRADATION MECHANISM AND INFLUENCING FACTORS DURING COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 128-136. doi: 10.13205/j.hjgc.202106019
    [14]CHE Yue-chi, YAN Bei-bei, WANG Xu-tong, CHEN Guan-yi, DAN Zeng, MENG De-an. RESEARCH PROGRESS OF TECHNICAL OPTIMIZATION OF SEWAGE SLUDGE COMPOSTING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 164-173. doi: 10.13205/j.hjgc.202104025
    [15]YE Zhao-yong, YANG Yu, HOU Li-an. HOTSPOTS AND TRENDS OF GROUNDWATER RELATED RESEARCHES NEAR LANDFILLS:VISUAL ANALYSIS BASED ON CITESPACE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 65-71. doi: 10.13205/j.hjgc.202106011
    [16]YAO Quan-wei, ZHANG Jun, YAN Qin-ying, WANG Dun-qiu, XI Bei-dou. MAIN FACTORS ON DISSIPATION OF TYPICAL FLUOROQUINOLONES IN SEWAGE SLUDGE COMPOST DURING MESOPHILIC AND THERMOPHILIC PHASES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 200-207. doi: 10.13205/j.hjgc.202009032
    [18]Hao Yidang, Wu Long, Shen Ping, Li Shiqi. PRECISE REDUCTION EXPERIMENT STUDY OF BAYER RED MUD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 100-104. doi: 10.13205/j.hjgc.201501023
    [19]Xia Bingbin Wang Feng Yang Haizhen. THE PREPARATION AND COMPONENT ANALYSIS OF WOOD VINEGAR BASED ON MEDICAL WASTE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 112-116. doi: 10.13205/j.hjgc.201501026
  • Cited by

    Periodical cited type(10)

    1. 原媛,刘丝丝,崔勇涛,赖智龙,廖德祥. 生物酶用于河湖底泥脱水减量调理的对比研究. 水资源与水工程学报. 2025(01): 154-162 .
    2. 陈颖,王新雨,徐秀丽,蔡璐,郑国砥,王侃. 添加复合酶对污泥生物干化有机质降解及产热的影响研究. 宁波大学学报(理工版). 2024(03): 88-95 .
    3. 汤连生,陈洋,曾显帅,程子华,丁威涯. 聚合氯化铝预处理污泥联合脱水有效性及机理. 中山大学学报(自然科学版)(中英文). 2024(04): 37-46 .
    4. 吴曰丰,池艳峰,张露,江帅,杨锡刚,赵旭远. 堆存市政污泥深度脱水及其重金属稳定化效果研究. 环境工程技术学报. 2023(01): 248-254 .
    5. 于艳,于晓丹. 基于臭气空间分布特性的城市污水除臭仿真. 计算机仿真. 2023(05): 530-534 .
    6. 张佳宝,孟庆杰,郑怀礼,康旭,孙蕾,钟正,杨柳崴. 双氧水与絮凝药剂联用改善市政污泥脱水性能的研究. 广东化工. 2022(21): 87-90+95 .
    7. 赵旭远,张露,冒小丹,洪国军,江帅. 堆存污泥深度脱水及其干化泥饼焚烧特性研究. 环境科学研究. 2021(04): 1015-1022 .
    8. 冯力. 超声波联合化学调理改善污泥脱水性能研究及应用. 节能与环保. 2021(05): 98-99 .
    9. 刘婷娇,吴春山. 污泥脱水预处理技术研究述评. 海峡科学. 2020(03): 43-46 .
    10. 李良雪. 提高污水处理厂剩余污泥脱水性能. 建材与装饰. 2019(05): 109-110 .

    Other cited types(8)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.9 %FULLTEXT: 12.9 %META: 87.1 %META: 87.1 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.3 %其他: 18.3 %China: 0.7 %China: 0.7 %上海: 1.5 %上海: 1.5 %东莞: 1.5 %东莞: 1.5 %临汾: 0.4 %临汾: 0.4 %临沂: 0.4 %临沂: 0.4 %丽水: 1.1 %丽水: 1.1 %北京: 3.7 %北京: 3.7 %南京: 4.9 %南京: 4.9 %天水: 0.4 %天水: 0.4 %天津: 3.4 %天津: 3.4 %宣城: 1.1 %宣城: 1.1 %巴音郭楞: 0.7 %巴音郭楞: 0.7 %常州: 0.4 %常州: 0.4 %常德: 1.1 %常德: 1.1 %广州: 1.5 %广州: 1.5 %张家口: 1.9 %张家口: 1.9 %德黑兰: 6.7 %德黑兰: 6.7 %惠州: 0.4 %惠州: 0.4 %成都: 1.5 %成都: 1.5 %扬州: 0.4 %扬州: 0.4 %昆明: 0.4 %昆明: 0.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.4 %朝阳: 0.4 %来宾: 0.4 %来宾: 0.4 %杭州: 0.7 %杭州: 0.7 %柳州: 0.7 %柳州: 0.7 %武汉: 0.4 %武汉: 0.4 %济南: 0.7 %济南: 0.7 %济源: 0.7 %济源: 0.7 %温州: 0.4 %温州: 0.4 %湖州: 1.1 %湖州: 1.1 %漯河: 1.1 %漯河: 1.1 %盐城: 0.7 %盐城: 0.7 %石家庄: 2.2 %石家庄: 2.2 %绵阳: 0.4 %绵阳: 0.4 %芒廷维尤: 22.0 %芒廷维尤: 22.0 %芝加哥: 1.5 %芝加哥: 1.5 %西宁: 4.5 %西宁: 4.5 %西安: 1.9 %西安: 1.9 %贵阳: 0.7 %贵阳: 0.7 %运城: 2.6 %运城: 2.6 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.4 %郑州: 0.4 %长沙: 0.7 %长沙: 0.7 %青岛: 1.9 %青岛: 1.9 %其他China上海东莞临汾临沂丽水北京南京天水天津宣城巴音郭楞常州常德广州张家口德黑兰惠州成都扬州昆明晋城朝阳来宾杭州柳州武汉济南济源温州湖州漯河盐城石家庄绵阳芒廷维尤芝加哥西宁西安贵阳运城遵义邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (218) PDF downloads(6) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return