Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Ting-ting, SHENG Chang-dong. ISOTHERMAL CALORIMETRIC ANALYSIS OF EXOTHERMIC CHARACTERISTICS OF MUNICIPAL SEWAGE SLUDGE DURING LOW TEMPERATURE OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 110-115,123. doi: 10.13205/j.hjgc.202110015
Citation: WANG Ting-ting, SHENG Chang-dong. ISOTHERMAL CALORIMETRIC ANALYSIS OF EXOTHERMIC CHARACTERISTICS OF MUNICIPAL SEWAGE SLUDGE DURING LOW TEMPERATURE OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 110-115,123. doi: 10.13205/j.hjgc.202110015

ISOTHERMAL CALORIMETRIC ANALYSIS OF EXOTHERMIC CHARACTERISTICS OF MUNICIPAL SEWAGE SLUDGE DURING LOW TEMPERATURE OXIDATION

doi: 10.13205/j.hjgc.202110015
  • Received Date: 2020-12-12
    Available Online: 2022-01-26
  • Aiming at the problems of low temperature oxidation and self-heating of dried municipal sewage sludge, the exothermic characteristics of low temperature oxidation of the sludge with moisture content of 10%~70% (dry basis) at different temperatures (30℃~70℃) were studied with isothermal calorimetry. The results showed that the low temperature oxidation heat generation had three major mechanisms, including microbial biological oxidation, inorganic matters (Fe/S/O system) oxidation, organic matters chemical oxidation. The low temperature oxidation exothermic characteristics of the sludge were resulted from their comprehensive performance, and the overlapping of these three mechanisms jointly determined the self-heating characteristics of the sludge at low temperatures. The moisture content and ambient temperature affected the contribution of each heat source in process of sludge low-temperature oxidation, leading to the transformation of the main heat source and also having impact on the respective heat release characteristics of the three mechanisms. Increasing temperature and moisture content enhanced the heat generation of the sludge, then the self-heating potential became stronger, thus increased the risk of spontaneous combustion.
  • [1]
    张静,赵建伟,孙英杰,等. 新兴污染物对剩余污泥厌氧发酵产氢的影响研究[J]. 环境工程,2020,38(8):13-20.
    [2]
    SYED-HASSAN S S A, WANG Y, HU S, et al. Thermochemical processing of sewage sludge to energy and fuel:fundamentals, challenges and considerations[J]. Renewable and Sustainable Energy Reviews, 2017, 80:888-913.
    [3]
    李日宁,路浩,佟海松. 油田含油污泥减量及无害处理技术研究[J]. 油气田地面工程, 2019,38(12):111-115.
    [4]
    国家能源局,生态环境部. 关于燃煤耦合生物质发电技改试点项目建设的通知(国能发电力[2018] 53号)[Z]. 2018.
    [5]
    陈大元,王志超,李宇航,等. 燃煤机组耦合污泥发电技术[J]. 热力发电,2019,48(4):15-20.
    [6]
    ZERLOTTIN M, REFOSCO D, DELLA ZASSA M, et al. Self-heating of dried wastewater sludge[J]. Waste Management, 2013, 33(1):129-137.
    [7]
    ESCUDEY M, ARIAS A, FÖRSTER J, et al. Sewage sludge self-heating and spontaneous combustion. Field, Laboratory and Numerical Studies[J]. High Temperature Materials and Processes, 2008, 27(5):337-346.
    [8]
    POFFET M S, KÄSER K, JENNY T A. Thermal runaway of dried sewage sludge granules in storage tanks[J]. CHIMIA International Journal for Chemistry, 2008,62(1):29-34.
    [9]
    FERNANDEZ-ANEZ N, GARCIA-TORRENT J, MEDIC-PEJIC L. Flammability properties of thermally dried sewage sludge[J]. Fuel, 2014, 134:636-643.
    [10]
    DÍAZ E, PINTADO L, FABA L, et al. Effect of sewage sludge composition on the susceptibility to spontaneous combustion[J]. Journal of Hazardous Materials, 2019, 361:267-272.
    [11]
    孙伟,王岩,揭其良,等. 300 MW机组锅炉燃煤耦合生物质发电的可行性研究[J]. 电站系统工程,2019,35(4):11-14.
    [12]
    LI X R, LIM W S, IWATA Y, KOSEKI H. Safety evaluation of sewage-sludge-derived fuels by comparison with other fuels[J]. Fire and Materials, 2009, 33(4):187-200.
    [13]
    BERTANI R, BIASIN A, CANU P, et al. Self-heating of dried industrial tannery wastewater sludge induced by pyrophoric iron sulfides formation[J]. Journal of Hazardous Materials, 2016, 305:105-114.
    [14]
    LI X R, KOSEKI H, MOMOTA M. Evaluation of danger from fermentation-induced spontaneous ignition of wood chips[J]. Journal of Hazardous Materials, 2006, 135(1/2/3):15-20.
    [15]
    ZHU Y X, ZHANG H, SHENG C D. Characterizing self-heating of cereal straws by isothermal microcalorimetry[J]. Thermochimica Acta, 2021, 698:178881.
    [16]
    WADSÖ L. Measuring chemical heat production rates of biofuels by isothermal calorimetry for hazardous evaluation modelling[J].Fire and Materials, 2007, 31(4):241-255.
    [17]
    DEWIL R, BAEYENS J, ROELS J, et al. Distribution of sulphur compounds in sewage sludge treatment[J]. Environmental Engineering Science, 2008, 25(6):879-896.
    [18]
    DELLA ZASSA M, BIASIN A, ZERLOTTIN M, et al. Self-heating of dried industrial wastewater sludge:lab-scale investigation of supporting conditions[J]. Waste Management, 2013, 33(6):1469-1477.
    [19]
    REDDY A P, JENKINS B M, VANDERGHEYNST J S. The critical moisture range for rapid microbial decomposition of rice straw during storage[J]. American Society of Agricultural and Biological Engineers, 2009, 52(2):673-677.
    [20]
    RYCKEBOER J, MERGAER T J, VAES K, et al. A survey of bacteria and fungi occurring during composting and self-heating processes[J]. Annals of Microbiology, 2003, 53(4):349-410.
    [21]
    REZAEI F, VANDERGHEYNST J S. Critical moisture content for microbial growth in dried food-processing residues[J]. Journal of the Science of Food and Agriculture, 2010, 90(12):2000-2005.
  • Relative Articles

    [1]BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009
    [2]ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002
    [3]YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022
    [4]LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016
    [5]HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031
    [6]SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020
    [7]DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005
    [8]WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028
    [9]ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004
    [10]CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015
    [11]HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014
    [12]LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022
    [13]LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027
    [14]GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023
    [15]SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015
    [16]BAI Xiu-jia, ZHANG Hong-yu, GU Jun, ZHANG Qi, WANG Ji-hong. PHYSICO-CHEMICAL PROPERTIES AND RESOURCE UTILIZATION OF STALE REFUSE IN LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 116-120,124. doi: 10.13205/j.hjgc.202102018
    [17]LIU Hang-yi, YAN Bei-bei, LIN Fa-wei, WANG Yuan, WANG Xu-tong, CHEN Guan-yi. COMPARATIVE ANALYSIS OF TWO KINDS OF FOOD WASTE RECYCLING SCHEMES FROM THE PERSPECTIVE OF LCA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 169-175. doi: 10.13205/j.hjgc.202109024
    [18]ZHU Xiao-yan, CHEN Ting, ZHAO Ying-ying, QIU Xiao-peng, YIN Jun, FENG Hua-jun, ZHANG Jin-feng. INFLUENCING FACTORS OF THE SCALE OF FOOD WASTE TREATMENT IN CHINA: STATISTICAL ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 172-177,53. doi: 10.13205/j.hjgc.202103024
    [19]ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017
    [20]SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007
  • Cited by

    Periodical cited type(5)

    1. 薛鲜丽,刘子睦,李娜,郭瑞,王德培. 高效降解高盐高油餐厨垃圾微生物的筛选与应用. 食品与发酵工业. 2023(07): 73-79 .
    2. 樊玲嘉,彭鑫,陈硕夫,李慧,刘艳,张嘉超,张立华,黄红丽. 高效降解厨余垃圾复合菌剂的构建及应用. 湖南农业科学. 2023(03): 61-66 .
    3. 樊玲嘉,彭鑫,陈硕夫,李慧,刘艳,张嘉超,张立华,黄红丽. 高效降解厨余垃圾复合菌剂的构建及应用(英文). Agricultural Science & Technology. 2023(03): 29-38 .
    4. 巩光禄,赵铎,郭鹏博,张方政,张洪奇,申贵男,晏磊,邱财生,邱化蛟,王伟东. 微生物菌剂对玉米秸秆和餐厨垃圾混合好氧堆肥的影响. 黑龙江八一农垦大学学报. 2022(05): 92-98 .
    5. 李亚林,刘蕾,关明玥,孙猛,李柳婷,毛瑞月,何海洋. 纳米CaO_2激发餐厨垃圾碳组分合成水凝胶及溶胀性能分析. 化工进展. 2022(11): 6120-6129 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040246810
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.3 %FULLTEXT: 12.3 %META: 80.9 %META: 80.9 %PDF: 6.8 %PDF: 6.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.9 %其他: 11.9 %其他: 0.4 %其他: 0.4 %China: 3.8 %China: 3.8 %[]: 1.3 %[]: 1.3 %上海: 2.1 %上海: 2.1 %临汾: 0.4 %临汾: 0.4 %丽水: 0.8 %丽水: 0.8 %佛山: 0.4 %佛山: 0.4 %北京: 4.7 %北京: 4.7 %十堰: 0.4 %十堰: 0.4 %南京: 2.5 %南京: 2.5 %南通: 0.8 %南通: 0.8 %台州: 2.1 %台州: 2.1 %合肥: 0.4 %合肥: 0.4 %呼伦贝尔: 0.8 %呼伦贝尔: 0.8 %天津: 1.3 %天津: 1.3 %宜昌: 3.4 %宜昌: 3.4 %宣城: 0.4 %宣城: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %廊坊: 2.5 %廊坊: 2.5 %成都: 1.3 %成都: 1.3 %昆明: 0.8 %昆明: 0.8 %晋城: 0.8 %晋城: 0.8 %朝阳: 0.4 %朝阳: 0.4 %杭州: 1.3 %杭州: 1.3 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %济源: 0.8 %济源: 0.8 %湖州: 0.8 %湖州: 0.8 %漯河: 0.4 %漯河: 0.4 %潍坊: 0.4 %潍坊: 0.4 %濮阳: 0.4 %濮阳: 0.4 %福州: 0.4 %福州: 0.4 %美国伊利诺斯芝加哥: 0.4 %美国伊利诺斯芝加哥: 0.4 %芒廷维尤: 27.1 %芒廷维尤: 27.1 %芜湖: 0.4 %芜湖: 0.4 %芝加哥: 1.3 %芝加哥: 1.3 %苏州: 0.4 %苏州: 0.4 %衢州: 1.7 %衢州: 1.7 %西宁: 3.8 %西宁: 3.8 %贵阳: 2.5 %贵阳: 2.5 %运城: 4.2 %运城: 4.2 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.1 %郑州: 2.1 %重庆: 0.8 %重庆: 0.8 %铁岭: 0.4 %铁岭: 0.4 %银川: 0.4 %银川: 0.4 %长沙: 1.7 %长沙: 1.7 %长治: 0.4 %长治: 0.4 %黄石: 0.4 %黄石: 0.4 %龙岩: 0.4 %龙岩: 0.4 %其他其他China[]上海临汾丽水佛山北京十堰南京南通台州合肥呼伦贝尔天津宜昌宣城常德广州廊坊成都昆明晋城朝阳杭州武汉沈阳济源湖州漯河潍坊濮阳福州美国伊利诺斯芝加哥芒廷维尤芜湖芝加哥苏州衢州西宁贵阳运城遵义邯郸郑州重庆铁岭银川长沙长治黄石龙岩

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (144) PDF downloads(3) Cited by(10)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return