Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017
Citation: SUN Jin, TAN Xin, ZHANG Shu-guang, JI Tao. COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 124-128. doi: 10.13205/j.hjgc.202110017

COMPOSITION AND MELTING CHARACTERISTICS OF FLY ASH FROM 14 MSWI PLANTS IN CHINA

doi: 10.13205/j.hjgc.202110017
  • Received Date: 2021-02-02
    Available Online: 2022-01-26
  • In this paper, the physicochemical properties of fly ash from 14 municipal solid waste incinerators located in Northeast, North, East and South China were analysed, including their composition, loss on ignition and melting characteristics. The results showed that the content of CaO in fly ash of grate furnace was the highest in China, and the mass fraction of CaO was 40%~60%. The content of Cl was in the range of 20%~30%. At the same time, considerable contents of heavy metals which are easy to gasify were enriched in the fly ash. The loss on ignition of fly ash increased significantly with the increase of incineration temperature. When the temperature was 1200℃ above, it tended to be stable, and the highest loss on ignition was 40% above. The flow temperature of fly ash was most significantly affected by the content of SiO2, distributed in the range of 1100~1500℃.
  • [1]
    李清毅,宋凯,何亮等. 生活垃圾填埋场中飞灰固化体动态半动态浸出行为[J]. 环境工程,2019,37(11):149-154.
    [2]
    饶荣,罗超,刘青. 生活垃圾焚烧飞灰无害化及资源化研究进展[J]. 有色金属冶金设计与研究,2018,39(5):29-34.
    [3]
    栾敬德,姚鹏飞,李润东. MSW焚烧飞灰熔融技术研究进展[J]. 环境工程,2014,32(4):92-94.
    [4]
    卢欢亮,王中慧,汪永红,等. 等离子体熔融技术处理垃圾焚烧飞灰的中试研究[J]. 环境卫生工程,2017,25(4):51-57.
    [5]
    OKADA T, TOMIKAWA H. Efficiencies of metal separation and recovery in ash-melting of municipal solid waste under non-oxidative atmospheres with different reducing abilities[J]. Journal of Environmental Management, 2016, 166:147-155.
    [6]
    常威,蒋旭光,邱琪丽,等. 全烧垃圾流化床炉飞灰制备免烧砖的性能研究[J]. 环境科学学报,2015,35(7):2224-2232.
    [7]
    李润东,聂永丰,王雷,等. 成分对垃圾飞灰熔融过程重金属迁移的影响[J]. 清华大学学报,2004,36(8):1180-1183.
    [8]
    白晶晶,张增强,闫大海,等. 水洗对焚烧飞灰中氯及重金属元素的脱除研究[J]. 环境工程,2012,30(2):104-108.
    [9]
    王小波,阎常峰,赵增立,等. 垃圾焚烧飞灰熔融污染物排放研究[J]. 燃料化学学报,2008,36(6):748-752.
    [10]
    CLARKE L B,SLOSS. Trace Elements Emissions From Coal Combustion and Gasification[R]. London:IEA Coal Research Report,1992:356-367.
    [11]
    付建英,李晓东,詹明秀,等. 生活垃圾循环流化床焚烧锅炉飞灰中二噁英热解析特性研究[J]. 环境科学学报,2015,35(6):1833-1841.
    [12]
    林祖苍,刘云根,庞云平. 城市垃圾焚烧飞灰熔融过程中物质蒸发的研究[J]. 环境科学导刊,2008,27(增刊):107-110.
    [13]
    张楚,王爽. 城市垃圾焚烧飞灰高温熔融处理实验研究[J]. 辽宁石油化工大学学报,2019,39(16):31-35.
    [14]
    陈冬梅. 等离子体熔融垃圾焚烧飞灰制备玻璃体的实验研究[D]. 天津:天津大学,2018.
    [15]
    魏国侠,王承智,刘汉桥,等.垃圾焚烧飞灰熔融制备微晶玻璃的研究进展[J]. 中国陶瓷,2014,50(11):7-10.
    [16]
    郭志,刘志敏. 垃圾焚烧飞灰悬浮预热等离子体熔融系统热力学计算及能耗费用研究[J]. 热力发电,2020,40(4):12-17.
    [17]
    章骅,于思源,邵立明,等. 烟气净化工艺和焚烧炉类型对生活垃圾焚烧飞灰性质的影响[J]. 环境科学,2018,39(1):467-475.
    [18]
    陶应翔. 添加剂对垃圾焚烧飞灰高温熔融的影响研究[D].哈尔滨:哈尔滨工业大学,2019.
  • Relative Articles

    [1]HE Guofu, CHEN Min, GU Jiayan, CAI Jingli, XIE Liping, XUE Wenjin, HU Yingying. Research progress of carbon capture technology in sewage treatment based on CiteSpace metrological analysis[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 70-79. doi: 10.13205/j.hjgc.202501008
    [2]LIU Yanbo, ZHANG Zhaohan, LIU Guohong, SONG Yanfang, LI Jiannan, DUAN Jinhao, FENG Yujie. CONSTRUCTION OF A COMPREHENSIVE IMPACT ASSESSMENT METHOD OF SEWAGE TREATMENT TECHNOLOGY BASED ON LCA-AHP MODEL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 52-59. doi: 10.13205/j.hjgc.202412007
    [3]SHAO Yanjun, WANG Bing, ZHOU Yu, SHI Jun, ZONG Zhenghui, LIU Guoqiang, TAO Xiang, ZHANG Xin, HUANG Kaiwen, WANG Yan, WANG Shuo, LI Ji. PRELIMINARY STUDY ON APPLICATION OF SLUDGE DENSIFICATION SYSTEM TECHNOLOGY IN AN INVERTED AAO CONTINUOUS FLOW WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 72-79. doi: 10.13205/j.hjgc.202309009
    [4]GAO Song, QIU Yong, MENG Fanlin, ZHANG Xiaying, PAN Deli, WANG Kaijun. STATE-OF-ART AND TRENDS OF DATA ANALYTICAL TECHNIQUES FOR WASTEWATER TREATMENT PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 194-203. doi: 10.13205/j.hjgc.202206025
    [5]SONG Da-gang, LI Hui-bin, WANG Jiu-chen, MEI Zi-li, RAN Yi. BIBLIOMETRIC ANALYSIS OF RESEARCH TRENDS ON RURAL WASTEWATER TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 16-24,30. doi: 10.13205/j.hjgc.202105003
    [6]ZHANG Yun-long, WANG Xuan, LIU Dan, LIAO Zhen-mei, LIU Qiang, LI Chun-hui, CAI Yan-peng. INFLUENCES OF GROUNDWATER DEPTH ON WATER TRANSPORT AND DISSIPATION IN SPAC SYSTEM OF PHRAGMITES AUSTRALIS IN A SEMI-ARID WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 7-13. doi: 10.13205/j.hjgc.202010002
    [7]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
  • Cited by

    Periodical cited type(2)

    1. 沈耀良. 我国农村生活污水处理:技术策略路径. 苏州科技大学学报(工程技术版). 2021(04): 1-16 .
    2. 黄慧静,章伟. 固-液厌氧折流板反应器处理番茄酱加工废水. 化工时刊. 2020(09): 23-25+56 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.4 %FULLTEXT: 15.4 %META: 84.6 %META: 84.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 9.5 %其他: 9.5 %其他: 0.2 %其他: 0.2 %China: 2.9 %China: 2.9 %[]: 0.2 %[]: 0.2 %上海: 1.2 %上海: 1.2 %东莞: 0.6 %东莞: 0.6 %临汾: 0.2 %临汾: 0.2 %北京: 7.7 %北京: 7.7 %十堰: 0.2 %十堰: 0.2 %南京: 2.6 %南京: 2.6 %南宁: 0.2 %南宁: 0.2 %南通: 0.5 %南通: 0.5 %台州: 0.5 %台州: 0.5 %嘉兴: 0.2 %嘉兴: 0.2 %天津: 0.8 %天津: 0.8 %安康: 0.2 %安康: 0.2 %安顺: 0.2 %安顺: 0.2 %常德: 0.2 %常德: 0.2 %广州: 1.4 %广州: 1.4 %张家口: 0.8 %张家口: 0.8 %成都: 1.5 %成都: 1.5 %扬州: 0.2 %扬州: 0.2 %昆明: 0.2 %昆明: 0.2 %晋城: 0.3 %晋城: 0.3 %曼谷: 0.9 %曼谷: 0.9 %朝阳: 0.2 %朝阳: 0.2 %杭州: 0.5 %杭州: 0.5 %武汉: 0.2 %武汉: 0.2 %汕头: 0.2 %汕头: 0.2 %济南: 0.6 %济南: 0.6 %济源: 0.3 %济源: 0.3 %深圳: 0.8 %深圳: 0.8 %温州: 0.5 %温州: 0.5 %湖州: 0.3 %湖州: 0.3 %湘潭: 0.2 %湘潭: 0.2 %湛江: 0.3 %湛江: 0.3 %漯河: 0.6 %漯河: 0.6 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %芒廷维尤: 43.3 %芒廷维尤: 43.3 %芝加哥: 0.8 %芝加哥: 0.8 %苏州: 0.3 %苏州: 0.3 %衢州: 0.2 %衢州: 0.2 %西宁: 11.5 %西宁: 11.5 %西安: 0.9 %西安: 0.9 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.3 %运城: 2.3 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.9 %郑州: 0.9 %重庆: 0.3 %重庆: 0.3 %镇江: 0.2 %镇江: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 1.1 %阳泉: 1.1 %其他其他China[]上海东莞临汾北京十堰南京南宁南通台州嘉兴天津安康安顺常德广州张家口成都扬州昆明晋城曼谷朝阳杭州武汉汕头济南济源深圳温州湖州湘潭湛江漯河石家庄福州芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州重庆镇江长治阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (361) PDF downloads(14) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return