Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019
Citation: HE Jia-ni, LIU Yi-li, LI Zhu-lin, QIU Zhao-wen. ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 136-142. doi: 10.13205/j.hjgc.202110019

ENERGY CONSUMPTION ANALYSIS OF MUNICIPAL SOLID WASTE CLASSIFIED TRANSPORTATION

doi: 10.13205/j.hjgc.202110019
  • Received Date: 2020-11-30
    Available Online: 2022-01-26
  • Although lots of energy was consumed in municipal solid waste (MSW) classification transportation, little researches were focused on this process. The energy consumption analysis is not only the basis of the comprehensive evaluation of the environment and economic benefits of MSW classification, but also the basis for the designing of MSW classification and transportation systems. In this study, three typical scenarios (residential area, office/business area, and school area) of MSW classified transportation were developed and the energy consumption in each scenario was calculated. The results showed that:there was no significant difference in energy consumption in these three MSW classified transportation scenarios. Compared with the mixed MSW transportation, the energy consumption of classified transportation increased by 77%~116% (direct transportation) and 25%~42% (single stage transshipment), and the reduction of transportation energy consumption caused by transshipment was negatively related to the transportation distance. For each waste component, the energy consumption ascending order in transportation was food waste[0.09~0.10 kgce/(t·km) by direct transportation, 0.05~0.07 kgce/(t·km) by transshipment], residual waste or recyclables[0.11~0.13 kgce/(t·km) by direct transportation, 0.07~0.08 kgce/(t·km) by transshipment], and hazardous waste[0.21~0.30 kgce/(t·km) by direct transportation, 0.13~0.20 kgce/(t·km) by transshipment].
  • [1]
    张静. 城市生活垃圾运输成本多高?[J]. 环境经济, 2015(8):31.
    [2]
    尉薛菲. 中国生活垃圾分类产业的经济学分析[D].北京:中国社会科学院研究生院,2020.
    [3]
    NABAVI-PELESARAEI A, BAYAT R, HOSSEINZADEH-BANDBAFHA H, et al. Modeling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management:a case study in Tehran Metropolis of Iran[J]. Journal of Cleaner Production, 2017, 148:427-440.
    [4]
    潘发存. 餐厨垃圾资源化利用产沼气发电的生命周期评价[D]. 南宁:广西大学, 2018.
    [5]
    LARSEN A W, VRGOC M, THOMAS C, et al. Diesel consumption in waste collection and transport and its environmental significance[J]. Waste Management Research, 2009, 27(7):652-659.
    [6]
    王晨頔. 基于分类的北京城市生活垃圾清运车辆调度与优化研究[D].北京:北京交通大学, 2018.
    [7]
    陈美珠,蒋敏,韦彩嫩.广州市生活垃圾转运系统优化研究[J].环境卫生工程,2019,27(6):61-63.
    [8]
    常晓英,蓝岚,蔡洪英."无废城市"建设背景下重庆市(主城区)生活垃圾处理现状、问题及建议[J].资源再生,2020(5):33-35.
    [9]
    赵子旼.北京市西城区生活垃圾收运现状与对策[J].环境卫生工程,2017,25(6):7-9.
    [10]
    项田甜.基于集对分析的居民区生活垃圾源头分类方案比选研究[D].武汉:华中科技大学,2017.
    [11]
    谢新源.北京市城市生活垃圾产生量及组分研究[D].北京:北京大学,2008.
    [12]
    陈海滨,杨龑,刘彩.基于产生源特性的生活垃圾分类"2+n"模式拓展研究[J].环境卫生工程,2017,25(3):1-3.
    [13]
    曹巍.济南市人均生活垃圾产生量分析与预测[J].环境卫生工程,2015,23(4):12-14.
    [14]
    汪文俊,宾晓蓓,郭宁,等.率先进行高校生活垃圾分类试点的探讨[J].中国资源综合利用,2012,30(10):31-34.
    [15]
    吴文涛,庆承松,彭书传.合肥工业大学校园生活垃圾现状调查与分析[J].合肥工业大学学报(自然科学版),2005,28(11):1424-1426,1435.
    [16]
    董晓丹,夏苏湘,李晓勇.上海市松江区生活垃圾物理组分特征调查分析[J].环境卫生工程,2015,23(5):26-28.
    [17]
    陶倩倩.上海市商业事业单位生活垃圾分类现状及源头减量潜力研究[J].环境与可持续发展,2018,43(6):62-65.
    [18]
    国家环境保护部.环境影响评价报告公示:凌云路农贸菜市场项目环评报告[R].2017.
    [19]
    黄昌付.深圳市生活垃圾理化组分的统计学研究[D].武汉:华中科技大学,2012.
    [20]
    黄本生,李晓红,王里奥,等.重庆市主城区生活垃圾理化性质分析及处理技术[J].重庆大学学报(自然科学版),2003,26(9):9-13.
    [21]
    丁湘蓉,霍维周.聚类分析在生活垃圾分类方法确定中的应用[J].环境与可持续发展,2008(4):55-58.
    [22]
    王晓峰. 危险废物理化特性分析及其对废物焚烧的影响[D].上海:同济大学,2006.
    [23]
    阚宝鹏. 青岛市城市生活垃圾处理现状、理化特性及处置方式研究[D].青岛:青岛大学,2017.
    [24]
    陈倩倩.宁波市不同区分类垃圾理化特性与温室气体排放特征研究[D].杭州:浙江大学,2018.
    [25]
    杨娜,邵立明,何晶晶.我国城市生活垃圾组分含水率及其特征分析[J].中国环境科学,2018,38(3):1033-1038.
    [26]
    王昭,李振山,冯亚斌,等.北京市生活垃圾转运站耗能和排污特征及其影响因素分析[J].环境科学,2013,34(6):2456-2463.
    [27]
    苏州合巨环保技术有限公司.义龙新区闽达废品回收站建设项目环评报告公示[R].2019.
    [28]
    湖北黄环环保科技有限公司.黔西南田瑞废品回收站建设项目环评报告公示[R].2019.
    [29]
    邓鹏.厨余垃圾资源化处理工程实例分析[J].南方农机,2020,51(2):18-19.
    [30]
    南平美城环境工程有限公司.环境影响评价报告公示:餐厨垃圾收集转运环评报告[R].2017.
    [31]
    南京国环科技股份有限公司.淮北市生活垃圾卫生填埋场项目环评报告公示[R].2018.
    [32]
    刘敏,邵军,刘旭.北京市垃圾粪便处理设施节能减排问题探析[J].环境卫生工程,2015,23(4):51-54.
    [33]
    刘欣艳.生活垃圾焚烧发电厂能耗评价指标研究[J].节能,2015,34(2):27-30

    ,3.
    [34]
    LIU Y L, SUN W X, LIU J G. Greenhouse gas emissions from different municipal solid waste management scenarios in China:Based on carbon and energy flow analysis[J]. Waste Management, 2017, 68:653-661.
    [35]
    张明武,宋敏英,刘意立,等.生活垃圾源头沥水的减量提质效应研究[J].环境科学学报,2017,37(3):1032-1037.
    [36]
    周燕芳,熊惠波.北京市垃圾拾荒者的资源贡献及其经济价值估测[J].生态经济,2010(6):168-171.
    [37]
    MOHAMMADI M, JÄMSÄ-JOUNELA, SIRKKA-LIISA, et al. Optimal planning of municipal solid waste management systems in an integrated supply chain network[J]. Computers & Chemical Engineering, 2019, 123:155-169.
    [38]
    刘劲驰. 南京市餐厨垃圾处置建议研究[J]. 资源节约与环保, 2020(5):144-145.
    [39]
    蒲东栋, 徐长勇, 郭任宏. 生活垃圾绿色收运"漳州模式"[J]. 环境卫生工程, 2019, 27(3):27-30.
    [40]
    中华人民共和国住房和城乡建设部. CJJ/T 47-2016《生活垃圾转运站技术规范》[S]. 北京:中国建筑工业出版社,2016.
  • Relative Articles

    [1]CHEN Fang, HU Jun, XU Lizhong, HUANG Weilong, GUO Eryang, RAO Qinghua. SPATIOTEMPORAL AGGREGATION CHANGE PATTERN OF PM2.5 AND O3 CONCENTRATION IN FUJIAN PROVINCE,CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 171-182. doi: 10.13205/j.hjgc.202407019
    [2]CHEN Yi, LI Longguo, BAI Ting, CHEN Meng, HUANG Yanchun, FU Bin, LI Naiwen. EVALUATION AND CORRELATION ANALYSIS OF WATER/SEDIMENT POLLUTION STATUS IN CHENGDU SECTION OF THE TUOJIANG RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 144-152. doi: 10.13205/j.hjgc.202407016
    [3]ZHU Yongqiang, FANG Mingming, XU Tingting, XU Mengya, LIAO Hua, ZHANG Zhanjun. CONSTRUCTION AND EFFECT OF COMBINED IN-SITU ECOLOGICAL RESTORATION SYSTEM FOR URBAN BLACK AND ODOROUS RIVER WATER: A CASE STUDY IN A BLACK AND ODOROUS RIVER IN SHANGHAI[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 240-247. doi: 10.13205/j.hjgc.202301029
    [4]GAO Yang, WANG Chao, WANG Peifang, CHEN Juan, YOU Guoxiang. REMOVAL PERFORMANCE OF NITROGEN AND PHOSPHORUS IN FARMLAND DRAINAGE BY DIFFERENT SCALE DRAINAGE DITCHES AND THE INFLUENCE FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 8-15. doi: 10.13205/j.hjgc.202305002
    [5]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [6]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [7]CUI Feijian, QIN Guangxiong, ZENG Hailong, HUANG Zhiwei, LI Wenjing, YANG Hanjie, HU Yanfang, FANG Huaiyang, ZENG Fantang, DU Hongwei. SPATIAL DISTRIBUTION CHARACTERISTICS AND POLLUTION ASSESSMENT OF NITROGEN, PHOSPHORUS AND HEAVY METAL IN SURFACE SEDIMENTS OF HEAVILY POLLUTED TRIBUTARIES OF SHAHE RIVER BASIN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 110-116. doi: 10.13205/j.hjgc.202201016
    [8]GU Jia-yan, TIAN Hong, YIN Hui, HE Guo-fu, XU Yue-qing. VARIATION CHARACTERISTICS IN WATER ENVIRONMENT OF DIFFERENT TAILWATER RECEIVING RIVERS IN WINTER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 64-69. doi: 10.13205/j.hjgc.202101009
    [9]JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]GAO Chan-juan, ZHAO Qi-chao, DING Ruo-nan, ZHANG Jin-ming, LI Ying-hua, DONG Chun-xin. VARIATIONS OF ATMOSPHERIC POLLUTANTS CONCENTRATIONS AND THEIR CORRELATION WITH METEOROLOGICAL FACTOR IN JILIN CITY IN 2018[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 71-79. doi: 10.13205/j.hjgc.202105010
    [12]LI Juan, ZHANG Wei, SANG Min, CHE Wu, SUN Hui-chao, HUANG Mian-song. REVIEW ON PURIFICATION MECHANISM AND PERFORMANCE OPTIMIZATION METHODS OF BIORETENTION FOR NITROGEN AND PHOSPHORUS IN URBAN STORMWATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 77-82,113. doi: 10.13205/j.hjgc.202004014
    [13]CHEN Jin-huan, TANG Jia-wen, WANG Kai-nan, ZHANG Qiu-zhuo. APPLICATION OF AQUATIC PLANTS COMMUNITY BUILDING TECHNOLOGY IN EUTROPHIC WATER RESTORATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 105-112,135. doi: 10.13205/j.hjgc.202008018
    [15]Wang Yuehua Tang Lili Zou Qiang Ding Ming, . A CONTRASTIVE STUDY OF BLACK CARBON AEROSOL INSTRUMENTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 142-145. doi: 10.13205/j.hjgc.201504030
    [16]Wang Yayan, Zhang Jiangang, Ni Pengping, Li Mengying, Yu Yingjie, Zhang Lingling, Xu Yuliang, Cai Cong, Xie Liqun. APPLICATION RESEARCHES ON IN-SITU ECOLOGICAL RESTORATION TECHNOLOGY IN POLLUTED URBAN RIVER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 11-16. doi: 10.13205/j.hjgc.201503003
    [17]Xu Wei Li Yong Tang Chuanxiang Chen Xiangbin Li Huijuan Xiong Daowen Yu Shaoqin, . EXPERIMENT OF A NEW AERATION SYSTEM USED IN MBR INTEGRATION EQUIPMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 10-14. doi: 10.13205/j.hjgc.201510003
    [18]Cheng Nianliang, Li Yunting, Zhang Dawei, Sun Ruiwen, Dong Xin, Cheng Bingfen, Li Hongxia. ANALYSIS ON THE SPATIAL AND TEMPORAL DISTRIBUTION OF PM2. 5 IN BEIJING IN 2013[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 43-46. doi: 10.13205/j.hjgc.201510010
    [19]Li Anfeng, Xu Wenjiang, Pan Tao, Yao Jinghua, Li Jian. APPLICATION OF CONSTRUCTED WETLAND IN EUTROPHICATED LANDSCAPE WATER REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(1): 15-18. doi: 10.13205/j.hjgc.201501004
    [20]Chen Zefang, Yang Xunan, Wu Qunhe. COMPARISON OF OIL SORPTION CAPACITY BETWEEN HYDROPHYTE AND TRADITIONAL VEGETABLE SORBENTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 50-55. doi: 10.13205/j.hjgc.201503010
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.2 %FULLTEXT: 11.2 %META: 88.8 %META: 88.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 28.6 %其他: 28.6 %东莞: 4.1 %东莞: 4.1 %南京: 3.1 %南京: 3.1 %哈尔滨: 1.0 %哈尔滨: 1.0 %嘉兴: 1.0 %嘉兴: 1.0 %大理: 1.0 %大理: 1.0 %天津: 3.1 %天津: 3.1 %广州: 2.0 %广州: 2.0 %张家口: 1.0 %张家口: 1.0 %新乡: 1.0 %新乡: 1.0 %无锡: 2.0 %无锡: 2.0 %昆明: 3.1 %昆明: 3.1 %杭州: 1.0 %杭州: 1.0 %湛江: 1.0 %湛江: 1.0 %漯河: 4.1 %漯河: 4.1 %盐城: 1.0 %盐城: 1.0 %芒廷维尤: 23.5 %芒廷维尤: 23.5 %芝加哥: 2.0 %芝加哥: 2.0 %蚌埠: 1.0 %蚌埠: 1.0 %衡水: 1.0 %衡水: 1.0 %衢州: 1.0 %衢州: 1.0 %西宁: 4.1 %西宁: 4.1 %西安: 2.0 %西安: 2.0 %运城: 1.0 %运城: 1.0 %邯郸: 1.0 %邯郸: 1.0 %鄂州: 3.1 %鄂州: 3.1 %重庆: 1.0 %重庆: 1.0 %青岛: 1.0 %青岛: 1.0 %其他东莞南京哈尔滨嘉兴大理天津广州张家口新乡无锡昆明杭州湛江漯河盐城芒廷维尤芝加哥蚌埠衡水衢州西宁西安运城邯郸鄂州重庆青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (283) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return