Citation: | TANG Xin-hua, JIA Yu-yang, CUI Yang, CHEN Mo-yu, LIU Lei. ENHANCEMENT OF MICROBIAL FUEL CELL PERFORMANCE BY Fe-S-N CO-DOPED POROUS CARBON CATHODE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 163-170. doi: 10.13205/j.hjgc.202110023 |
[1] |
LOGAN B E, RABAEY K. Conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies[J]. Science, 2012, 337:686-690.
|
[2] |
王琳, 李雪, 王丽. 复合生物阴极型微生物燃料电池处理废水及同步产电性能[J]. 环境科学研究, 2017, 30(7):1098-1104.
|
[3] |
卓露, 汪兴兴, 吕帅帅, 等. 微生物燃料电池技术的研究进展[J]. 现代化工, 2017, 37(8):41-44.
|
[4] |
HUA B, ZHANG Y Q, YAN N, et al. The excellence of both worlds:developing effective double perovskite oxide catalyst of oxygen reduction reaction for room and elevated temperature applications[J]. Advanced Functioncal Materials, 2016,26(23):4106-4112.
|
[5] |
LIU Y Y,RUAN J,SANG S B, et al.Iron and nitrogen co-doped carbon derived from form soybeans as eiffcient elector-catalysts for the oxygen reduction reaction[J]. Electrochimica Acta, 2016,215:338-397.
|
[6] |
彭洪亮. 掺杂碳基催化剂的制备及其氧还原性能研究[D]. 广州:华南理工大学, 2015, 132-134.
|
[7] |
TANG H L, ZENG Y, ZENG Y X, et al. Iron-embedded nitrogen doped carbon frameworks as robust catalyst for oxygen reduction reaction in microbial fuel cells[J]. Applied Catalysis B:Environmental, 2017, 202:550-556.
|
[8] |
VAZQUEZ-ARENAS J, HIGGINS D, CHEN Z, et al. Mechanistic analysis of highly active nitrogen-doped carbon nanotubes for the oxygen reduction reaction[J].Journal of Power Sources, 2012, 205:215-221.
|
[9] |
CASTRO-MUNIZ A, HOSHIKAWA Y, KASUKABE T, et al. Real understanding of the nitrogen-doping effect on the electrochemical performance of carbon materials by using carbon-coated mesoporous silica as a model material[J].Langmuir, 2016, 32(8):2127-2135.
|
[10] |
罗岚. 氮掺杂碳纳米管/碳复合材料的制备及其电催化氧还原性能研究[D]. 湘潭:湘潭大学, 2016.
|
[11] |
YANG Z R, WU J, ZHENG X J, et al. Enhanced catalytic activity for the oxygen reduction reaction with co-doping of phosphorus and iron in carbon[J]. Journal of Power Sources, 2015, 277:161-168.
|
[12] |
LIU T, GUO Y F, YAN Y M, et al. CoO nanoparticles embedded inthree-dimensional nitrogen/sulfur co-doped carbon nanofiber networks as a bifunctional catalyst for oxygen reduction/evolution reactions[J]. Carbon, 2016,106:84-92.
|
[13] |
YAN W N, CAO X C, TIAN J H, et al. Nitrogen/sulfur dual-doped 3D reduced graphene oxide networks-supported CoFe2O4 with enhanced electrocatalytic activities for oxygen reduction and evolution reactions[J]. Carbon, 2016, 99:195-202.
|
[14] |
YANG M, LIU Y J, CHEN H B, et al. Porous N-doped carbon prepared from triazine-based polypyrrole network:a highly efficient metal-free catalyst for oxygen reduction reaction in alkaline electrolytes[J]. ACS Applied Materials & Interfaces, 2016, 8(42):28615-28623.
|
[15] |
YOUN D H, BAE G H, HAN S H. A highly efficient transition metal nitride-based electrocatalyst for oxygen reduction reaction:TiN on a CNT-graphene hybrid support[J]. Journal of Materials Chemistry A, 2013, 1:8007-8015.
|
[16] |
DONG X M, JIN H L, WANG R Y, et al. High volumetric capacitance, ultralong life supercapacitors enabled by waxberry-derived hierarchical porous carbon materials[J]. Advanced Energy Materials, 2018,106:50-57.
|
[17] |
TRAN Q C, DAO V D, KIM H Y, et al. Pt-based alloy/carbon black nanohybrid covered with ionic liquid supramolecules as an efficient catalyst for oxygen reduction reactions[J]. Applied Catalysis B:Environmental, 2017, 204:365-373.
|
[18] |
DUAN J J, CHEN S, DAI S, et al. Shape control of Mn3O4 nanoparticles on nitrogen-doped graphene for enhanced oxygen reduction activity[J]. Advanced Functional Materlas, 2014, 24(14):2072-2078.
|
[19] |
ZHOU L H, FU P, WEN D H, et al. Self-constructed carbon nanoparticles-coated porous biocarbon from plant moss as advanced oxygen reduction catalysts[J]. Applied Catalysis B:Environmental, 2016, 181:635-643.
|
[20] |
麻媛媛,邹金龙.氮氟共掺杂多孔碳作为微生物燃料电池阴极催化剂的性能研究[J].黑龙江大学工程学报,2019,10(1):31-37.
|
[21] |
谭亮.碳基阴极材料的制备及其在微生物燃料电池中的应用[D].广州:广州大学,2017.
|
[22] |
范泽宇,李俊,等.新型介孔Fe-N-C阴极催催化剂用于微生物燃料电池[J].工程热物理学报,2019,40(12):2860-2866.
|
[23] |
ZHANG L, LIU C, ZHUANG L, et al. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosensors and Bioelectronics, 2009, 24:2825-2829.
|
[24] |
YUAN Y, AHMED J, KIM S. Polyaniline/carbon black composite-supported iron phthalocyanine as an oxygen reduction catalyst for microbial fuel cells[J]. Journal of Power Sources, 2011,196(3):1103-1106.
|
[25] |
涂丽杏,朱能武,等. 羧基化碳纳米管载铂催化剂对微生物燃料电池阴极氧还原性能的影响[J]环境科学,2013,34(4):1617-1622.
|
[1] | FENG Hong, JIN Jianlong, HONG Qin, HU Yiming, LIU Lintao, LIN Chengqian, HUANG Qunxing, ZHOU Yonggang. RESEARCH ON HOLLOW AUGER SERIES PYROLYZER AND PRODUCT CHARACTERISTIC OF WASTE TIRES COUPLED WITH COAL-FIRE UNIT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 217-224. doi: 10.13205/j.hjgc.202407024 |
[2] | GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004 |
[3] | NIU Mingfen, CHEN Chi, WU Bo, GUO Shuhai, LI Gang, XU Li, YAN Xiaofeng. INFLUENCE OF SEQUENCE OF THERMAL DESORPTION-STABILIZATION ON SOIL CADMIUM STABILIZATION EFFICIENCY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 166-172. doi: 10.13205/j.hjgc.202302022 |
[4] | ZHANG Lanxia, DU Wei, WANG Yan, XU Zhicheng, YUAN Jing, QI Chuanren, LI Jungang, LUO Wenhai, LI Yangyang, HE Wei, LI Guoxue. MATURITY AND ODOR GAS EMISSIONS DURING CO-COMPOSTING OF KITCHEN WASTE AND AGRICULTURAL AND FORESTRY WASTES WITH DIFFERENT CARBON SOURCES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 105-112,119. doi: 10.13205/j.hjgc.202211015 |
[5] | HOU Lintong, YANG Xuezhong, LI Jian, YAN Beibei, CHEN Guanyi. SELF-POWER PROPERTY OF PYROLYSIS OF KITCHEN WASTE: AN INVESTIGATION ON THE MASS AND ENERGY FLOW[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 37-45. doi: 10.13205/j.hjgc.202212006 |
[6] | MA Jiayu, JIN Yuqi, XUE Dong, TANG Feng, ZHU Zhongxu, LI Minjie, CHEN Siyu. DIOXIN EMISSION CHARACTERISTICS OF A NOVEL 30 t/d VILLAGE AND TOWN-SCALE SOLID WASTES GASIFICATION SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 162-168. doi: 10.13205/j.hjgc.202210022 |
[7] | MA Dachao, DENG Xiushan, DENG Xiuquan, ZHANG Xuan, LIANG Zhengwu, FENG Qingge. PROCESS PROPERTIES AND MICROBIAL COMMUNITY SUCCESSION DURING THE STATICAL BIO-DRYING OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 106-111,133. doi: 10.13205/j.hjgc.202204015 |
[8] | BAI Xiu-jia, ZHANG Hong-yu, GU Jun, ZHANG Qi, WANG Ji-hong. PHYSICO-CHEMICAL PROPERTIES AND RESOURCE UTILIZATION OF STALE REFUSE IN LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 116-120,124. doi: 10.13205/j.hjgc.202102018 |
[9] | ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017 |
[10] | CHEN Feng, CHEN Dan, HU Yong-you. ANALYSIS ON INFLUENCING FACTORS OF EFFECT OF HIGH TEMPERATURE AEROBIC BIOLOGICAL DRYING PROCESS OF GARBAGE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 141-145. doi: 10.13205/j.hjgc.202001022 |
[11] | LI Tong, WANG Pan, CHEN Xi-teng, ZHAO Ze-xi, MA Li-juan, REN Lian-hai. DRY ANAEROBIC FERMENTATION OF KITCHEN WASTE AND FOOD WASTE AND ALLEVIATION OF ACID INHIBITION BY ACTIVATED CARBON[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 213-218. doi: 10.13205/j.hjgc.202009034 |
[15] | Zhang Cuicui, Zhang Xiaoming, Tian Jiarui, Zhao Peitao, Ge Shifu. PILOT STUDY ON CHARACTERISTICS OF DRUM DRYING FOR DEEP-DEHYDRATION DYEING SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 79-82. doi: 10.13205/j.hjgc.201508018 |
[16] | Zhao Weibing, Wang Jiaquan, Hu Shuheng, Zhai Xu, Yang Fei. OPTIMIZATION OF PROCESSING PARAMETERS OF ORGANIC MSW BIO-DRYING BY ORTHOGONAL TESTS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 97-100. doi: 10.13205/j.hjgc.201508022 |
1. | 周亚文,陈灏,钟为章,杨珂,冯卫博,许彬. 高水分厨余垃圾脱水预处理技术. 应用化工. 2022(05): 1450-1455 . ![]() |