Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 10
Jan.  2022
Turn off MathJax
Article Contents
DONG Wan-tao, WANG Ya-jun, LI Li, ZHANG Xing. REACTION KINETICS STUDY ON H2O2 AND Na2FeO4 REMOVING TOTAL PETROLEUM HYDROCARBON FROM SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 178-184. doi: 10.13205/j.hjgc.202110025
Citation: DONG Wan-tao, WANG Ya-jun, LI Li, ZHANG Xing. REACTION KINETICS STUDY ON H2O2 AND Na2FeO4 REMOVING TOTAL PETROLEUM HYDROCARBON FROM SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 178-184. doi: 10.13205/j.hjgc.202110025

REACTION KINETICS STUDY ON H2O2 AND Na2FeO4 REMOVING TOTAL PETROLEUM HYDROCARBON FROM SOIL

doi: 10.13205/j.hjgc.202110025
  • Received Date: 2020-08-24
    Available Online: 2022-01-26
  • Two oxidants, H2O2 and Na2FeO4, were used to remove TPH from soil. The reaction kinetic model was established according to the relationship between reaction conditions and reaction rate. The factors such as reaction rate change, half-life and TPH removal rate in the reaction process were discussed and compared, and their reaction laws were also found out. The results showed that the process of removing TPH by H2O2 conformed to the first-order reaction kinetic model. The process of removing TPH by Na2FeO4 conformed to the second-order reaction kinetic model. The increase of H2O2 concentration led to the increase of reaction kinetic constant, and the increase of Na2FeO4 concentration led to the decrease of reaction kinetic constant. The initial reaction rates of H2O2 solution with TPH at concentrations of 0.078, 0.156, 0.234 mol/L TPH were 0.61×10-3, 1.38×10-3, 2.09×10-3 mol/(L·min). The initial reaction rates of Na2FeO4 solution with TPH at three concentrations of 0.070, 0.140 and 0.210 mol/L were 13.30×10-3, 20.47×10-3, 12.86×10-3 mol/(L·min). The reaction rates of the two oxidants with TPH were in the order of Na2FeO4>H2O2. The half-life of H2O2 reacted with TPH was 40.40~66.50 min, and the half-life of Na2FeO4 reacted with TPH was 4.10~7.14 min. The half-life of H2O2 was about 10 times of that of Na2FeO4. The removal rate of TPH in the soil by the two oxidants could reach more than 60%, which would not cause residue in the soil, but the utilization rate was low. The characteristics of the reaction rate, half-life and removal rate of the two oxidants in the process of removing TPH were summarized. Finally, the paper screened and optimized the reaction conditions to provide a theoretical basis for soil remediation in the Loess Plateau.
  • loading
  • [1]
    张晓曦, 张玲玲, 雷航宇, 等. 草本凋落物与尿素联合修复对油污土壤生物化学性质的影响[J]. 生态学报, 2020, 40(8):2715-2725.
    [2]
    纪学雁. 土壤中石油污染物迁移规律实验模拟研究[D]. 大庆:大庆石油学院, 2005.
    [3]
    冯程程. 松嫩石油污染及重度盐碱化草地土壤酶动力学及热力学特征的比较研究[D]. 哈尔滨:哈尔滨师范大学, 2019.
    [4]
    张辉, 宋琳, 陈晓琳, 等. 土壤退化的原因与修复作用研究[J]. 海洋科学,2020,44(8):147-161.
    [5]
    魏样. 石油污染对土壤性状的影响及植物修复效应研究[D]. 咸阳:西北农林科技大学, 2019.
    [6]
    李丽, 董万涛, 张兴, 等. 石油污染土壤修复技术研究进展[J]. 四川环境, 2020, 39(4):200-205.
    [7]
    CHEN Y, ZHAO R, XUE J, et al. Generation and distribution of PAHs in the process of medical waste incineration[J].Waste Management, 2013,33(5):1165-1173.
    [8]
    耿坤宇. 管式涡流强化石油烃污染土壤洗脱技术的研究[D]. 上海:华东理工大学, 2019.
    [9]
    李小康. 深层土壤原油污染的微生物修复[D]. 西安:西安石油大学,2020.
    [10]
    徐佰青, 李平平, 王山榕, 等. 植物修复石油污染土壤的研究进展[J]. 当代化工, 2020, 49(7):1527-1531.
    [11]
    GLAZE W H, KANG J, CHAPIN D H. Chemistry of water treatment processesinvolving ozone, hydrogen peroxide and ultraviolet radiation[J]. Ozone:Science andEngineering, 1987, 9:335-352.
    [12]
    赖冬麟, 张奇, 陈亭亭, 等.张家口市某机械厂原址电镀污染场地土壤修复工程实践[J].环境工程,2020,38(6):75-80.
    [13]
    HASELOW J S, SIEGRIST R L, CRIMI M, et al. Estimating the total oxidant demand for in situ chemical oxidation design[J]. Remediation, 2003, 13(4):5-16.
    [14]
    ZAPPI Y B. Infrastructural needs in waste containment and environmental restoration[J]. Journal of Infrastructure Systems, 1995, 1(2):82-91.
    [15]
    吴昊. 大连某TPH污染场地原位强化过硫酸钠修复技术研究[D]. 沈阳:沈阳大学,2017.
    [16]
    阳杰, 杜保森. 活化过硫酸钠修复多环芳烃污染土壤效果研究[J]. 广州化工, 2020, 48(14):88-90.
    [17]
    OURIACHE H, ARRAR J, NAMANE A, et al. Treatment of petroleum hydrocarbons contaminated soil by Fenton like oxidation[J]. Chemosphere, 2019, 232:377-386.
    [18]
    罗玉虎, 卢楠. 芬顿法修复石油污染土壤使用条件优化的研究[J].西部大开发(土地开发工程研究), 2019, 4(4):33-37.
    [19]
    徐正国, 唐秋萍, 王颖. 不同氧化剂对某煤制气厂多环芳烃污染土壤的修复效果研究[J]. 环境工程, 2016,34(增刊1):988-992.
    [20]
    贾恒义.黄土丘陵草地土壤营养元素含量迁移及分布[J].水土保持研究,1998, 5(1):3-5.
    [21]
    刘柏玲, 蔡强国, 史志华, 等.黄土土质对溅蚀特征的影响[J]. 水土保持研究, 2016, 23(5):1-6.
    [22]
    LEMAIRE J, LAURENT F, LEYVAL C, et al. PAH oxidation in aged and spiked soils investigated by column experiments[J]. Chemosphere, 2013, 91(3):406-414.
    [23]
    RANC B, FAURE P, CROZE V, et al. Selection of oxidant doses for in situ chemical oxidation of soils contaminated by polycyclic aromatic hydrocarbons (PAHs):A review[J]. Journal of Hazardous Materials, 2016, 312:280-297.
    [24]
    张耀亭,白世基,张维. 改进的水中痕量过氧化氢的分光光度测定法[J]. 环境与健康杂志, 2006,23(3):258-261.
    [25]
    贾汉东,杨新玲,杨勇,等. 高铁酸盐的直接分光光度法测定[J].分析化学, 1999, 27(5):617.
    [26]
    WANG W, LIU Y, LI T L, et al. Heterogeneous Fenton catalytic degradation of phenol based on controlled release of magnetic nanoparticles[J]. Chemical Engineering Journal, 2014,242:1-9.
    [27]
    USMAN M, FAURE P, HANNA K, et al. Application of magnetite catalyzed chemical oxidation (Fenton-like and persulfate) for the remediation of oil hydrocarbon contamination[J]. Fuel, 2012, 96(1):270-276.
    [28]
    BEN W W, QIANG Z M, PAN X, et al. Removal of veterinary antibiotics from sequencing batch reactor (SBR) pretreated swine wastewater by Fenton's reagent[J].Water research, 2009, 43(17):4392-4402.
    [29]
    PIGNATELLO J J, OLIVEROS E, MACKAY A. Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry[J]. Critical Reviews in Environmental Science and Technology, 2006, 36(1):1-84.
    [30]
    徐金兰, 郭玉琴, 郭阳. 低浓度双氧水提高原油污染土壤氧化效果的实验研究[J]. 西安建筑科技大学学报(自然科学版), 2019, 51(5):743-750.
    [31]
    燕启社,高镜清,孙红文,等. Fenton氧化处理对土壤中芘的生物可利用性的影响[J].生态环境, 2008, 17(6):2215-2220.
    [32]
    贺泓, 李俊华, 上官文峰, 等.环境催化原理及应用[M]. 北京:科技出版社, 2008.
    [33]
    VENN Y, GAN S Y. Current status and prospects of Fenton oxidation for the decontamination of persistent organic pollutants (POPs) in soils[J]. Chemical Engineering Journal, 2012, 213(12):295-317.
    [34]
    VENN Y, GAN S Y. Inorganic chelated modified-Fenton treatment of polycyclic aromatic hydrocarbon (PAH)-contaminated soils[J]. Inhalation Toxicology, 2012, 180(7):1-8.
    [35]
    SHARMA V K, ZBORIL R, VARMA R S. Ferrates:greener oxidants with multimodal action in water treatment technologies[J].Accounts of Chemical Research, 2015, 48(2):182-191.
    [36]
    GOFF H, MURMANN R K. Mechanism of Isotopic Oxygen Exchange and Reduction of Ferrate(Ⅵ) ion (FeO42-)[J]. Journal of the American Chemical Society, 1971, 93(23):6058-6065.
    [37]
    LEE Y, KISSNER R, GUNTEN U. Reaction of ferrate(Ⅵ) with ABTS and self-decay of ferrate(Ⅵ):kinetics and mechanisms[J]. Environmental Science & Technology, 2014,48(9):5154-5162.
    [38]
    SARMA R, ANGELES A M,BRINKLEY D W, et al. Studies of the di-iron(Ⅵ) intermediate in ferrate-dependent oxygen evolution from water[J]. Journal of the American Chemical Society, 2012,134(37):15371-15386.
    [39]
    RUSH J D, ZHAO Z, BIELSKI B H J. Reaction of ferrate(Ⅵ)/ferrate(Ⅴ) with hydrogen peroxide and superoxide anion-a stopped-flow and premix pulse radiolysis study[J]. Free Radical Research, 1996, 24(3):187-198.
    [40]
    KAMACHI T, KOUNO T, YOSHIZAWA K. Participation of multioxidants in the pH dependence of the reactivity of ferrate(Ⅵ)[J]. The Journal of Organic Chemistry, 2005, 70(11):4380-4388.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (138) PDF downloads(1) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return