Citation: | QU Xuan, YIN An-wei, FANG Ai-lun, LI Chun-yan, FENG Dong-lei, LI Ang. RESEARCH PROGRESS ON TREATMENT TECHNOLOGY OF REFRACTORY POLYMER-CONTAINING OILFIELD PRODUCED WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 46-51. doi: 10.13205/j.hjgc.202111005 |
[1] |
李杰训,赵雪峰,田晶.高含水期大庆油田油气集输系统地面规划的做法与认识[J].石油规划设计,2017,28(4):8-11.
|
[2] |
陈忠喜,舒志明.大庆油田采出水处理工艺及技术[J].工业用水与废水,2014,45(1):36-46.
|
[3] |
何玉辉.大庆油田采出水处理新技术[J].油气田地面工程,2013,32(10):79-80.
|
[4] |
付强.大庆油田采出水处理系统的优化简化[J].油气田地面工程,2013,32(2):52.
|
[5] |
黄斌,王晨,傅程,等.三元复合驱采出水处理研究进展[J].化工进展,2020,39(10):4238-4247.
|
[6] |
程杰成, 吴军政, 吴迪. 三元复合驱油技术[M]. 北京:石油工业出版社, 2013.
|
[7] |
LI J X, LIU Y, WU D, et al. The synergistic effects of alkaline, surfactant, and polymer on the emulsification and destabilization of oilin-water crude oil emulsion produced by alkaline-surfactant-polymer flooding[J]. Petroleum Science and Technology, 2013, 31:399-407.
|
[8] |
鞠野. 一元/二元/三元驱油体系微观驱油机理研究[D]. 大庆:大庆石油学院, 2006.
|
[9] |
OREM W, TATU C, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale[J]. International Journal of Coal Geology, 2014, 126:20-31.
|
[10] |
LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado:implications for water treatment[J]. Science of the Total Environment, 2015, 512-513:637-644.
|
[11] |
STRINGFELLOW W T, DOMEN J K, CAMARILLO M K, et al. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing[J]. Journal of Hazardous Materials, 2014, 275:37-54.
|
[12] |
THURMAN E M, FERRER I, BLOTEVOGEL J, et al. Analysis of hydraulic fracturing flowback and produced waters using accurate mass:identification of ethoxylated surfactants[J]. Analytical Chemistry, 2014, 86(19):9653-9661.
|
[13] |
LAN D, CHEN M, LIU Y, et al. Development of shale gas in china and treatment options for wastewater produced from the exploitation:sustainability lessons from the united states[J]. Journal of Environmental Engineering, 2020, 146(9):04020103.
|
[14] |
ZHANG Z Y, DU X W, CARLSON K H, et al. Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration[J]. Desalination, 2019, 454:82-90.
|
[15] |
SHANG W, LIU Y H, HE Q P, et al. Efficient adsorption of organic matters and ions by porous biochar aerogel as pre-treatment of ultrafiltration for shale gas wastewater reuse[J]. Chemical Engineering Journal Advances, 2020, 2:100011.
|
[16] |
梁毅, 李春光, 唐杨,等. 基于高效聚结技术的放射性油水分离系统改造[J]. 净水技术, 2019, 38(2):105-108
,120.
|
[17] |
ETCHEPARE R, OLIVEIRA H, AZEVEDO A, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 186:326-332.
|
[18] |
WANG C Y, WANG Z X, WEI X Y, et al. A numerical study and flotation experiments of bicyclone column flotation for treating of produced water from ASP flooding[J]. Journal of Water Process Engineering, 2019, 32:100972.
|
[19] |
李永丰, 刘敏, 王晓飞,等. 海上油田含聚生产水旋流气浮装置试验研究[J]. 油气田地面工程, 2016, 35(10):22-25.
|
[20] |
TAWALBEH M, AL MOJJLY A, Al-OTHMAN A, et al. Membrane separation as a pre-treatment process for oily saline water[J]. Desalination, 2018, 447:182-202.
|
[21] |
CHANG H Q, LI T, LIU B C, et al. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays:a review[J]. Desalination, 2019, 455:34-57.
|
[22] |
CHANG H Q, LIU S, TONG T Z, et al. On-site treatment of shale gas flowback and produced water in Sichuan Basin by fertilizer drawn forward osmosis for irrigation[J]. Environmental Science & Technology, 2020, 54(17):10926-10935.
|
[23] |
GUO C, CHANG H Q, LIU B C, et al. A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water[J]. Environmental Science:Water Research & Technology, 2018, 4(7):942-955.
|
[24] |
WESCHENFELDER S E, LOUVISSE A, BORGES C P, et al. Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units[J]. Journal of Petroleum Science & Engineering, 2015, 131:51-57.
|
[25] |
MILLER H, DIAS K, HARE H, et al. Reusing oil and gas produced water for agricultural irrigation:effects on soil health and the soil microbiome[J]. Science of the Total Environment, 2020, 722:137888.
|
[26] |
KUSWORO T D, ARYANTI N, UTOMO D P. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process[J]. Chemical Engineering Journal, 2018, 347:462-471.
|
[27] |
ZHANG B, YU S L, ZHU Y B, et al. Application of a polytetrafluoroethylene (PTFE) flat membrane for the treatment of pre-treated ASP flooding produced water in a Daqing oilfield[J]. RSC Advances, 2016, 6(67):62411-62419.
|
[28] |
LAN D, CHEN M, LIU Y, et al. Development of shale gas in china and treatment options for wastewater produced from the exploitation:sustainability lessons from the united states[J]. Journal of Environmental Engineering, 2020, 146(9):04020103.
|
[29] |
ZHONG C, ZOLFAGHARI A, HOU D, et al. Comparison of the hydraulic fracturing water cycle in china and north america:a critical review[J]. Environmental Science & Technology, 2021.
|
[30] |
ZHANG Z J, ZHUANG Y L, LI J L, et al. Feasibility evaluation of the treatment and recycling of shale gas produced water:a case study of the first shale gas field in the Eastern Sichuan Basin, China[J]. Environmental Science:Water Research & Technology, 2019, 5(2):358-369.
|
[31] |
OETJEN K, CHAN K E, GULMARK K, et al. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse[J]. Science of the Total Environment, 2018, 619:654-664.
|
[32] |
ROSENBLUM J, NELSON A W, RUYLE B, et al. Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well[J]. Science of the Total Environment, 2017, 596:369-377.
|
[33] |
ZHANG W J, ZHANG M, XIAO F, et al. Pretreatment of high strength waste emulsions by combined vibratory shear enhanced process with Fenton oxidation[J]. International Journal of Environmental Science and Technology, 2014, 11(3):731-738.
|
[34] |
尹立平,张浩男.磁分离技术在低含聚污水处理中的应用[J].油气田地面工程,2016,35(4):96-97.
|
[35] |
MILLAR G J, LIN J, ARSHAD A, et al. Evaluation of electrocoagulation for the pre-treatment of coal seam water[J]. Journal of Water Process Engineering, 2014, 4:166-178.
|
[36] |
ESMAEILIRAD N, CARLSON K, OZBEK P O. Influence of softening sequencing on electrocoagulation treatment of produced water[J]. Journal of Hazardous Materials, 2015, 283:721-729.
|
[37] |
宋学峰,吴越强,许成君,王飞.电化学在三元复合驱采出水深度处理中的应用[J].油气田环境保护,2019,29(2):18-20
,61.
|
[38] |
ZHANG H, XIONG Z K, JI F Z, et al. Pretreatment of shale gas drilling flowback fluid (SGDF) by the microscale Fe0/persulfate/O3 process (mFe0/PS/O3)[J]. Chemosphere, 2017, 176:192-201.
|
[39] |
陈春茂, 曹越, 胡景泽,等. 难降解石油化工废水臭氧氧化处理催化剂研究进展[J]. 工业水处理, 2020, 40(4):1-5
,88.
|
[40] |
CHEN C, YOZA B A, CHEN H, et al. Manganese sand ore is an economical and effective catalyst for ozonation of organic contaminants in petrochemical wastewater[J]. Water, Air, & Soil Pollution, 2015, 226(6):1-11.
|
[41] |
LIU P, REN Y, MA W, et al. Degradation of shale gas produced water by magnetic porous MFe2O4 (M=Cu, Ni, Co and Zn) heterogeneous catalyzed ozone[J]. Chemical Engineering Journal, 2018, 345:98-106.
|
[42] |
廖传华, 廖玮, 朱跃钊,等. 一种用于稠油热采的超临界流体的制备系统和方法:中国,CN108251093A[P]. 2018.
|
[43] |
廖玮,朱廷风,廖传华,等.超临界水氧化技术在能量转化中的应用[J].水处理技术,2019,45(3):14-17.
|
[44] |
王存英, 张达志. 微波破乳-双旋流气浮处理含油污水试验[J]. 环境工程, 2016, 34(5):1-5.
|
[45] |
刘岩, 刘东方, 高芳, 等. 酵母菌-水解酸化-MBR工艺处理三元驱采出水的研究[J]. 工业水处理, 2015, 35(4):41-44.
|
[46] |
刘长莉, 王宝鑫, 李娜, 等. 弱碱三元采出水ABR生物处理工艺研究[J]. 环境科学与技术, 2015,38(增刊1):198-204.
|
[47] |
郭东璞, 林永波, 李永峰. 不同类型油田采出水作为阳极底物对MFC电压的影响[J]. 安徽农业科学, 2014, 42(2):523-526.
|
[48] |
黄雪松, 王晓颖, 张丽. 中原油田复杂采出水"微生物+膜"处理研究及现场试验[J]. 安全.健康和环境, 2021,21(2):25-29.
|
[49] |
周勇, 郭靖, 梁家豪,等. 三元复合驱含油污水处理技术研究进展[J]. 工业水处理, 2020,40(8):7-10.
|
[50] |
ZHOU X Y, ZHANG H R, LONG Y, et al. Sustainable and clean oilfield development:optimal operation of wastewater treatment and recycling system[J]. Journal of Cleaner Production, 2020, 252:119819.
|
[51] |
杨欢,赵华,陈腾巍. 油气地面管线内结垢固体颗粒沉积影响因素的实验研究[J]. 科学技术与工程,2016,16(9):80-85.
|
[52] |
张立伟. 三元复合驱含油污水"双膜"深度处理集成技术研究[D]. 长春:吉林大学,2018.
|
[53] |
唐洪明,龚小平,唐浩轩,等.页岩敏感性损害评价方法及损害机理[J]. 中南大学学报(自然科学版),2016,47(4):1227-1236.
|
[54] |
王庆吉.油田含硫采出水橇装一体化处理装置设计及应用[J].工业水处理,2021,41(1):147-150.
|
[55] |
UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165:673-690.
|
[1] | DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027 |
[2] | GAO Shudan, ZHANG Tingxue, TENG Xiao, REN Jing, ZHANG Jinran, GAO Chenqi, NIU Yating, BIAN Rongxing, SUN Yingjie. GREENHOUSE GAS EMISSIONS FROM WASTE DISPOSAL UNITS AND THEIR REDUCTION POTENTIAL: A CASE STUDY IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 253-259. doi: 10.13205/j.hjgc.202310029 |
[3] | LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032 |
[4] | SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027 |
[5] | HAN Kun, LIU Ruhai, XU Hongxia, WANG Yan, SHAO Long, LIU Xiaoyu. CHARACTERISTICS AND SOURCES APPORTIONMENT OF WATER-SOLUBLE IONS IN DUSTFALL IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 111-117,193. doi: 10.13205/j.hjgc.202203017 |
[6] | XU Chong-ping, YUE Qiang, ZHANG Yu-jie, WANG Huan-yu. EVALUATION OF OPTIMIZATION POTENTIAL OF URBAN METABOLIC SYSTEM DRIVEN BY “ZERO-WASTE CITY”: A CASE STUDY IN PANJIN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 224-232. doi: 10.13205/j.hjgc.202209030 |
[7] | GAO Shuai-qiang, SHAO Hui-huang, BAI Chun-yin, HU Xing-bao, YU Guang-wei, CHONG Yun-xiao, LI Feng-min, HU Hong-ying. THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 7-12,91. doi: 10.13205/j.hjgc.202104002 |
[8] | ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012 |
[9] | NIU Yue, GAO Yi, WANG Di-di, ZHANG Jing-bing, CHEN Jia-bo, WANG Hong-chen. WASTEWATER QUANTITY AND QUALITY FLUCTUATION CHARACTERISTICS OF DRAINAGE SYSTEM IN TUANDAO, QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 18-24. doi: 10.13205/j.hjgc.202112003 |
[10] | XU Ao, WU Yin-hu, CHEN Zhuo, CUI Qi, BAI Yu, LI Kui-xiao, SHI Yu-long, GAO Qiang, HU Hong-ying. MUNICIPAL WASTEWATER RECLAMATION IN BEIJING:STATE-OF-THE-ART AND FUTURE POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 1-6,47. doi: 10.13205/j.hjgc.202109001 |
[19] | Zhang Li Sun Jian, . THE ANALYSIS OF THE COUPLING RELATIONSHIP BETWEEN THE URBAN SYSTEM AND CLIMATE CHANGE: TAKING NANJING AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 71-75. doi: 10.13205/j.hjgc.201506016 |
1. | 宋炉生,孙振洲,胡晶,邓清海. 废弃铁矿及下游农田土壤重金属污染特征及来源解析. 环境工程. 2024(10): 155-164 . ![]() | |
2. | 杨晨晨,胡晏玮,迟明慧,张铮. 三峡库区澎溪河上游段沉积物重金属分布特征及风险评价. 防化研究. 2024(06): 45-52 . ![]() | |
3. | 周超凡,矫新明,董冰洁,张晓昱,吕赢,郑江鹏. 如东滩涂近岸海域沉积物重金属分布特征及风险评价. 环境监控与预警. 2022(02): 25-31 . ![]() | |
4. | 黄恒粤,陈垚,刘臻,陈人瑜,袁绍春. 基于知识图谱的三峡库区水环境研究热点与展望. 人民长江. 2022(05): 53-61 . ![]() | |
5. | 马涛,宋江敏,刘群群,盛彦清. 不同方式处置的疏浚沉积物重金属生态风险评价对比. 环境工程. 2021(02): 141-146+152 . ![]() | |
6. | 杨槟榕,付川,李波,王茂清,吴彦,平巍,黄炼旗,况薇. 铁修饰的污泥生物炭对污泥脱水性能的改善效果. 环境工程学报. 2021(06): 2046-2053 . ![]() | |
7. | 吕卫星,吕享宇. 攀枝花钒钛磁铁矿尾矿对土壤环境影响调查与分析. 环境影响评价. 2021(04): 70-74 . ![]() | |
8. | 朱学韬,林海英,冯庆革,赵博涵,朱奕帆,蓝文陆,李天深. 广西北部湾表层沉积物重金属污染水平、生态风险评价和源分析. 环境工程. 2021(08): 69-76 . ![]() | |
9. | 钟银海,付川,潘杰,闫彬,王珏巧,王欢,屈渝洋. 三峡水库万州段消落区沉积物重金属迁移转化特征. 环境科学与技术. 2021(12): 81-89 . ![]() | |
10. | 郑睿,谌书,王彬,李函珂,文新宇. 三峡库区香溪河沉积物重金属含量分布及风险评价. 生态环境学报. 2020(01): 192-198 . ![]() | |
11. | 温泉,赵艳民,曹伟,杨晨晨,张雷,张国宇,冯军坡. 潮白河中游沉积物中重金属分布、来源及生态风险评估. 环境科学研究. 2020(03): 599-607 . ![]() | |
12. | 许新瑶,蒲晓,刘训良,张瑞宁,张玉虎,高静,董雪,王子康. 潮白河密云段水体溶解性有机碳和重金属时空变化特征. 生态与农村环境学报. 2020(09): 1177-1184 . ![]() | |
13. | 张显强,谌金吾,孙敏. 三峡库区消落带土壤重金属污染及植物富集特征. 环境化学. 2020(09): 2490-2497 . ![]() | |
14. | 吴启豪,江新权,马晓利,陈平,陈敬润. 污灌区土壤中重金属污染状况与磁化率的相关性分析. 环境工程. 2020(09): 231-235+174 . ![]() | |
15. | 刘翔,郭建明,樊海龙,张生银,张顺存,雷天柱,王建丰. 刘家峡水库西南部水域表层沉积物重金属污染评价. 沉积与特提斯地质. 2020(04): 1-10 . ![]() |