Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
QU Xuan, YIN An-wei, FANG Ai-lun, LI Chun-yan, FENG Dong-lei, LI Ang. RESEARCH PROGRESS ON TREATMENT TECHNOLOGY OF REFRACTORY POLYMER-CONTAINING OILFIELD PRODUCED WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 46-51. doi: 10.13205/j.hjgc.202111005
Citation: QU Xuan, YIN An-wei, FANG Ai-lun, LI Chun-yan, FENG Dong-lei, LI Ang. RESEARCH PROGRESS ON TREATMENT TECHNOLOGY OF REFRACTORY POLYMER-CONTAINING OILFIELD PRODUCED WATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 46-51. doi: 10.13205/j.hjgc.202111005

RESEARCH PROGRESS ON TREATMENT TECHNOLOGY OF REFRACTORY POLYMER-CONTAINING OILFIELD PRODUCED WATER

doi: 10.13205/j.hjgc.202111005
  • Received Date: 2021-07-30
    Available Online: 2022-01-26
  • Produced water containing polymer has the characteristics of complex water quality, high viscosity, high degree of emulsification, and high oil content, which causes difficulty in oil-water separation and has serious impacts on oilfield production operations and the environment. This study analyzed the water quality characteristics of the polymer-containing produced water, and summarized the treatment technologies of the polymer-containing produced water, such as membrane separation method, air flotation method, advanced oxidation method, microbial method, etc., and explained the application of these treatment processes in various oil fields. The advantages and problems of various treatment technologies were described. This study also introduced the treatment technologies of polymer-containing produced water and the development of skid-mounted integrated water treatment equipment. Finally, some prospects were put forward for future research of polymer-containing produced water treatment technology, hoping to provide reference for the researches and engineering application of the sewage treatment technology.
  • [1]
    李杰训,赵雪峰,田晶.高含水期大庆油田油气集输系统地面规划的做法与认识[J].石油规划设计,2017,28(4):8-11.
    [2]
    陈忠喜,舒志明.大庆油田采出水处理工艺及技术[J].工业用水与废水,2014,45(1):36-46.
    [3]
    何玉辉.大庆油田采出水处理新技术[J].油气田地面工程,2013,32(10):79-80.
    [4]
    付强.大庆油田采出水处理系统的优化简化[J].油气田地面工程,2013,32(2):52.
    [5]
    黄斌,王晨,傅程,等.三元复合驱采出水处理研究进展[J].化工进展,2020,39(10):4238-4247.
    [6]
    程杰成, 吴军政, 吴迪. 三元复合驱油技术[M]. 北京:石油工业出版社, 2013.
    [7]
    LI J X, LIU Y, WU D, et al. The synergistic effects of alkaline, surfactant, and polymer on the emulsification and destabilization of oilin-water crude oil emulsion produced by alkaline-surfactant-polymer flooding[J]. Petroleum Science and Technology, 2013, 31:399-407.
    [8]
    鞠野. 一元/二元/三元驱油体系微观驱油机理研究[D]. 大庆:大庆石油学院, 2006.
    [9]
    OREM W, TATU C, VARONKA M, et al. Organic substances in produced and formation water from unconventional natural gas extraction in coal and shale[J]. International Journal of Coal Geology, 2014, 126:20-31.
    [10]
    LESTER Y, FERRER I, THURMAN E M, et al. Characterization of hydraulic fracturing flowback water in Colorado:implications for water treatment[J]. Science of the Total Environment, 2015, 512-513:637-644.
    [11]
    STRINGFELLOW W T, DOMEN J K, CAMARILLO M K, et al. Physical, chemical, and biological characteristics of compounds used in hydraulic fracturing[J]. Journal of Hazardous Materials, 2014, 275:37-54.
    [12]
    THURMAN E M, FERRER I, BLOTEVOGEL J, et al. Analysis of hydraulic fracturing flowback and produced waters using accurate mass:identification of ethoxylated surfactants[J]. Analytical Chemistry, 2014, 86(19):9653-9661.
    [13]
    LAN D, CHEN M, LIU Y, et al. Development of shale gas in china and treatment options for wastewater produced from the exploitation:sustainability lessons from the united states[J]. Journal of Environmental Engineering, 2020, 146(9):04020103.
    [14]
    ZHANG Z Y, DU X W, CARLSON K H, et al. Effective treatment of shale oil and gas produced water by membrane distillation coupled with precipitative softening and walnut shell filtration[J]. Desalination, 2019, 454:82-90.
    [15]
    SHANG W, LIU Y H, HE Q P, et al. Efficient adsorption of organic matters and ions by porous biochar aerogel as pre-treatment of ultrafiltration for shale gas wastewater reuse[J]. Chemical Engineering Journal Advances, 2020, 2:100011.
    [16]
    梁毅, 李春光, 唐杨,等. 基于高效聚结技术的放射性油水分离系统改造[J]. 净水技术, 2019, 38(2):105-108

    ,120.
    [17]
    ETCHEPARE R, OLIVEIRA H, AZEVEDO A, et al. Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles[J]. Separation and Purification Technology, 2017, 186:326-332.
    [18]
    WANG C Y, WANG Z X, WEI X Y, et al. A numerical study and flotation experiments of bicyclone column flotation for treating of produced water from ASP flooding[J]. Journal of Water Process Engineering, 2019, 32:100972.
    [19]
    李永丰, 刘敏, 王晓飞,等. 海上油田含聚生产水旋流气浮装置试验研究[J]. 油气田地面工程, 2016, 35(10):22-25.
    [20]
    TAWALBEH M, AL MOJJLY A, Al-OTHMAN A, et al. Membrane separation as a pre-treatment process for oily saline water[J]. Desalination, 2018, 447:182-202.
    [21]
    CHANG H Q, LI T, LIU B C, et al. Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays:a review[J]. Desalination, 2019, 455:34-57.
    [22]
    CHANG H Q, LIU S, TONG T Z, et al. On-site treatment of shale gas flowback and produced water in Sichuan Basin by fertilizer drawn forward osmosis for irrigation[J]. Environmental Science & Technology, 2020, 54(17):10926-10935.
    [23]
    GUO C, CHANG H Q, LIU B C, et al. A combined ultrafiltration-reverse osmosis process for external reuse of Weiyuan shale gas flowback and produced water[J]. Environmental Science:Water Research & Technology, 2018, 4(7):942-955.
    [24]
    WESCHENFELDER S E, LOUVISSE A, BORGES C P, et al. Evaluation of ceramic membranes for oilfield produced water treatment aiming reinjection in offshore units[J]. Journal of Petroleum Science & Engineering, 2015, 131:51-57.
    [25]
    MILLER H, DIAS K, HARE H, et al. Reusing oil and gas produced water for agricultural irrigation:effects on soil health and the soil microbiome[J]. Science of the Total Environment, 2020, 722:137888.
    [26]
    KUSWORO T D, ARYANTI N, UTOMO D P. Oilfield produced water treatment to clean water using integrated activated carbon-bentonite adsorbent and double stages membrane process[J]. Chemical Engineering Journal, 2018, 347:462-471.
    [27]
    ZHANG B, YU S L, ZHU Y B, et al. Application of a polytetrafluoroethylene (PTFE) flat membrane for the treatment of pre-treated ASP flooding produced water in a Daqing oilfield[J]. RSC Advances, 2016, 6(67):62411-62419.
    [28]
    LAN D, CHEN M, LIU Y, et al. Development of shale gas in china and treatment options for wastewater produced from the exploitation:sustainability lessons from the united states[J]. Journal of Environmental Engineering, 2020, 146(9):04020103.
    [29]
    ZHONG C, ZOLFAGHARI A, HOU D, et al. Comparison of the hydraulic fracturing water cycle in china and north america:a critical review[J]. Environmental Science & Technology, 2021.
    [30]
    ZHANG Z J, ZHUANG Y L, LI J L, et al. Feasibility evaluation of the treatment and recycling of shale gas produced water:a case study of the first shale gas field in the Eastern Sichuan Basin, China[J]. Environmental Science:Water Research & Technology, 2019, 5(2):358-369.
    [31]
    OETJEN K, CHAN K E, GULMARK K, et al. Temporal characterization and statistical analysis of flowback and produced waters and their potential for reuse[J]. Science of the Total Environment, 2018, 619:654-664.
    [32]
    ROSENBLUM J, NELSON A W, RUYLE B, et al. Temporal characterization of flowback and produced water quality from a hydraulically fractured oil and gas well[J]. Science of the Total Environment, 2017, 596:369-377.
    [33]
    ZHANG W J, ZHANG M, XIAO F, et al. Pretreatment of high strength waste emulsions by combined vibratory shear enhanced process with Fenton oxidation[J]. International Journal of Environmental Science and Technology, 2014, 11(3):731-738.
    [34]
    尹立平,张浩男.磁分离技术在低含聚污水处理中的应用[J].油气田地面工程,2016,35(4):96-97.
    [35]
    MILLAR G J, LIN J, ARSHAD A, et al. Evaluation of electrocoagulation for the pre-treatment of coal seam water[J]. Journal of Water Process Engineering, 2014, 4:166-178.
    [36]
    ESMAEILIRAD N, CARLSON K, OZBEK P O. Influence of softening sequencing on electrocoagulation treatment of produced water[J]. Journal of Hazardous Materials, 2015, 283:721-729.
    [37]
    宋学峰,吴越强,许成君,王飞.电化学在三元复合驱采出水深度处理中的应用[J].油气田环境保护,2019,29(2):18-20

    ,61.
    [38]
    ZHANG H, XIONG Z K, JI F Z, et al. Pretreatment of shale gas drilling flowback fluid (SGDF) by the microscale Fe0/persulfate/O3 process (mFe0/PS/O3)[J]. Chemosphere, 2017, 176:192-201.
    [39]
    陈春茂, 曹越, 胡景泽,等. 难降解石油化工废水臭氧氧化处理催化剂研究进展[J]. 工业水处理, 2020, 40(4):1-5

    ,88.
    [40]
    CHEN C, YOZA B A, CHEN H, et al. Manganese sand ore is an economical and effective catalyst for ozonation of organic contaminants in petrochemical wastewater[J]. Water, Air, & Soil Pollution, 2015, 226(6):1-11.
    [41]
    LIU P, REN Y, MA W, et al. Degradation of shale gas produced water by magnetic porous MFe2O4 (M=Cu, Ni, Co and Zn) heterogeneous catalyzed ozone[J]. Chemical Engineering Journal, 2018, 345:98-106.
    [42]
    廖传华, 廖玮, 朱跃钊,等. 一种用于稠油热采的超临界流体的制备系统和方法:中国,CN108251093A[P]. 2018.
    [43]
    廖玮,朱廷风,廖传华,等.超临界水氧化技术在能量转化中的应用[J].水处理技术,2019,45(3):14-17.
    [44]
    王存英, 张达志. 微波破乳-双旋流气浮处理含油污水试验[J]. 环境工程, 2016, 34(5):1-5.
    [45]
    刘岩, 刘东方, 高芳, 等. 酵母菌-水解酸化-MBR工艺处理三元驱采出水的研究[J]. 工业水处理, 2015, 35(4):41-44.
    [46]
    刘长莉, 王宝鑫, 李娜, 等. 弱碱三元采出水ABR生物处理工艺研究[J]. 环境科学与技术, 2015,38(增刊1):198-204.
    [47]
    郭东璞, 林永波, 李永峰. 不同类型油田采出水作为阳极底物对MFC电压的影响[J]. 安徽农业科学, 2014, 42(2):523-526.
    [48]
    黄雪松, 王晓颖, 张丽. 中原油田复杂采出水"微生物+膜"处理研究及现场试验[J]. 安全.健康和环境, 2021,21(2):25-29.
    [49]
    周勇, 郭靖, 梁家豪,等. 三元复合驱含油污水处理技术研究进展[J]. 工业水处理, 2020,40(8):7-10.
    [50]
    ZHOU X Y, ZHANG H R, LONG Y, et al. Sustainable and clean oilfield development:optimal operation of wastewater treatment and recycling system[J]. Journal of Cleaner Production, 2020, 252:119819.
    [51]
    杨欢,赵华,陈腾巍. 油气地面管线内结垢固体颗粒沉积影响因素的实验研究[J]. 科学技术与工程,2016,16(9):80-85.
    [52]
    张立伟. 三元复合驱含油污水"双膜"深度处理集成技术研究[D]. 长春:吉林大学,2018.
    [53]
    唐洪明,龚小平,唐浩轩,等.页岩敏感性损害评价方法及损害机理[J]. 中南大学学报(自然科学版),2016,47(4):1227-1236.
    [54]
    王庆吉.油田含硫采出水橇装一体化处理装置设计及应用[J].工业水处理,2021,41(1):147-150.
    [55]
    UMAR A A, SAAID I B M, SULAIMON A A, et al. A review of petroleum emulsions and recent progress on water-in-crude oil emulsions stabilized by natural surfactants and solids[J]. Journal of Petroleum Science and Engineering, 2018, 165:673-690.
  • Relative Articles

    [1]DUAN Huabo, ZHOU Jijiao, ZHAO Nana, LAN Xiaofeng, ZHENG Ruiying, FU Xingrui, CHEN Ying, SUN Jianming. A DIGITAL MANAGEMENT PLATFORM FOR SUPPORTING MUNICIPAL SOLID WASTE CLASSIFICATION: AN APPLICATION CASE OF HUZHOU, ZHEJIANG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 230-238. doi: 10.13205/j.hjgc.202402027
    [2]GAO Shudan, ZHANG Tingxue, TENG Xiao, REN Jing, ZHANG Jinran, GAO Chenqi, NIU Yating, BIAN Rongxing, SUN Yingjie. GREENHOUSE GAS EMISSIONS FROM WASTE DISPOSAL UNITS AND THEIR REDUCTION POTENTIAL: A CASE STUDY IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 253-259. doi: 10.13205/j.hjgc.202310029
    [3]LU Huimin, CHEN Zhuo, NI Xinye, WU Yinhu, HU Hongying. ANALYSIS OF WATER RECLAMATION AND REUSE IN JAPAN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 237-242. doi: 10.13205/j.hjgc.202303032
    [4]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [5]HAN Kun, LIU Ruhai, XU Hongxia, WANG Yan, SHAO Long, LIU Xiaoyu. CHARACTERISTICS AND SOURCES APPORTIONMENT OF WATER-SOLUBLE IONS IN DUSTFALL IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 111-117,193. doi: 10.13205/j.hjgc.202203017
    [6]XU Chong-ping, YUE Qiang, ZHANG Yu-jie, WANG Huan-yu. EVALUATION OF OPTIMIZATION POTENTIAL OF URBAN METABOLIC SYSTEM DRIVEN BY “ZERO-WASTE CITY”: A CASE STUDY IN PANJIN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 224-232. doi: 10.13205/j.hjgc.202209030
    [7]GAO Shuai-qiang, SHAO Hui-huang, BAI Chun-yin, HU Xing-bao, YU Guang-wei, CHONG Yun-xiao, LI Feng-min, HU Hong-ying. THE CAUSE OF FILAMENTOUS ALGAE OUTBREAK IN THE WATER BODIES SUPPLIED BY RECLAIMED WATER: A CASE STUDY ON A SOUTH CHINA RIVER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 7-12,91. doi: 10.13205/j.hjgc.202104002
    [8]ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012
    [9]NIU Yue, GAO Yi, WANG Di-di, ZHANG Jing-bing, CHEN Jia-bo, WANG Hong-chen. WASTEWATER QUANTITY AND QUALITY FLUCTUATION CHARACTERISTICS OF DRAINAGE SYSTEM IN TUANDAO, QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 18-24. doi: 10.13205/j.hjgc.202112003
    [10]XU Ao, WU Yin-hu, CHEN Zhuo, CUI Qi, BAI Yu, LI Kui-xiao, SHI Yu-long, GAO Qiang, HU Hong-ying. MUNICIPAL WASTEWATER RECLAMATION IN BEIJING:STATE-OF-THE-ART AND FUTURE POTENTIAL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 1-6,47. doi: 10.13205/j.hjgc.202109001
    [19]Zhang Li Sun Jian, . THE ANALYSIS OF THE COUPLING RELATIONSHIP BETWEEN THE URBAN SYSTEM AND CLIMATE CHANGE: TAKING NANJING AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 71-75. doi: 10.13205/j.hjgc.201506016
  • Cited by

    Periodical cited type(15)

    1. 宋炉生,孙振洲,胡晶,邓清海. 废弃铁矿及下游农田土壤重金属污染特征及来源解析. 环境工程. 2024(10): 155-164 . 本站查看
    2. 杨晨晨,胡晏玮,迟明慧,张铮. 三峡库区澎溪河上游段沉积物重金属分布特征及风险评价. 防化研究. 2024(06): 45-52 .
    3. 周超凡,矫新明,董冰洁,张晓昱,吕赢,郑江鹏. 如东滩涂近岸海域沉积物重金属分布特征及风险评价. 环境监控与预警. 2022(02): 25-31 .
    4. 黄恒粤,陈垚,刘臻,陈人瑜,袁绍春. 基于知识图谱的三峡库区水环境研究热点与展望. 人民长江. 2022(05): 53-61 .
    5. 马涛,宋江敏,刘群群,盛彦清. 不同方式处置的疏浚沉积物重金属生态风险评价对比. 环境工程. 2021(02): 141-146+152 . 本站查看
    6. 杨槟榕,付川,李波,王茂清,吴彦,平巍,黄炼旗,况薇. 铁修饰的污泥生物炭对污泥脱水性能的改善效果. 环境工程学报. 2021(06): 2046-2053 .
    7. 吕卫星,吕享宇. 攀枝花钒钛磁铁矿尾矿对土壤环境影响调查与分析. 环境影响评价. 2021(04): 70-74 .
    8. 朱学韬,林海英,冯庆革,赵博涵,朱奕帆,蓝文陆,李天深. 广西北部湾表层沉积物重金属污染水平、生态风险评价和源分析. 环境工程. 2021(08): 69-76 . 本站查看
    9. 钟银海,付川,潘杰,闫彬,王珏巧,王欢,屈渝洋. 三峡水库万州段消落区沉积物重金属迁移转化特征. 环境科学与技术. 2021(12): 81-89 .
    10. 郑睿,谌书,王彬,李函珂,文新宇. 三峡库区香溪河沉积物重金属含量分布及风险评价. 生态环境学报. 2020(01): 192-198 .
    11. 温泉,赵艳民,曹伟,杨晨晨,张雷,张国宇,冯军坡. 潮白河中游沉积物中重金属分布、来源及生态风险评估. 环境科学研究. 2020(03): 599-607 .
    12. 许新瑶,蒲晓,刘训良,张瑞宁,张玉虎,高静,董雪,王子康. 潮白河密云段水体溶解性有机碳和重金属时空变化特征. 生态与农村环境学报. 2020(09): 1177-1184 .
    13. 张显强,谌金吾,孙敏. 三峡库区消落带土壤重金属污染及植物富集特征. 环境化学. 2020(09): 2490-2497 .
    14. 吴启豪,江新权,马晓利,陈平,陈敬润. 污灌区土壤中重金属污染状况与磁化率的相关性分析. 环境工程. 2020(09): 231-235+174 . 本站查看
    15. 刘翔,郭建明,樊海龙,张生银,张顺存,雷天柱,王建丰. 刘家峡水库西南部水域表层沉积物重金属污染评价. 沉积与特提斯地质. 2020(04): 1-10 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 10.4 %FULLTEXT: 10.4 %META: 89.6 %META: 89.6 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 7.4 %其他: 7.4 %China: 4.4 %China: 4.4 %北京: 1.5 %北京: 1.5 %南京: 0.7 %南京: 0.7 %杭州: 0.7 %杭州: 0.7 %漯河: 0.7 %漯河: 0.7 %芒廷维尤: 48.9 %芒廷维尤: 48.9 %苏州: 0.7 %苏州: 0.7 %西宁: 33.3 %西宁: 33.3 %重庆: 0.7 %重庆: 0.7 %阳泉: 0.7 %阳泉: 0.7 %其他China北京南京杭州漯河芒廷维尤苏州西宁重庆阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (372) PDF downloads(28) Cited by(24)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return