Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHAO Qian, ZHUANG Lin-lan, SHENG Qin, ZHANG Jian. ROLE AND DESIGN PRINCIPLES OF SUBSTRATE FOR WASEWATER PURIFICATION IN SUBSURFACE FLOW CONSTRUCTED WETLAND[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 14-22. doi: 10.13205/j.hjgc.202109003
Citation: HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007

RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION

doi: 10.13205/j.hjgc.202111007
  • Received Date: 2021-06-29
    Available Online: 2022-01-26
  • It is more economical and sustainable that using biological removal method to treat selenium pollution in water bodies. However, most selenate-reducing model bacteria strains have poor environmental adaptability and are difficult in engineering applications. Using certain denitrifying bacteria with selenate reducing ability to treat selenium pollution is a new attempt. This study focused on the selenate-reducing flora dominated by denitrifying bacteria, by using the comparative analysis of substrate reduction rate, combined with the microbial community analysis and functional gene quantification. And we confirmed that periplasmic (Nap) nitrate reductase dominated the selenite reduction, clarified the role of denitrifying bacteria in the selenate reduction process, and further enriched the selenium-reducing flora. Furthermore, we proposed a new selenate removal strategy, that was, enriching the selenate-reducing activated sludge using nitrate as electron acceptor, greatly increased the selenate reduction efficiency and was conducive to engineering application.
  • [1]
    MORENO-Reyes R, SUETENS C, MATHIEU F, et al. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status[J]. New England Journal of Medicine,1998,339(16):1112-1120.
    [2]
    STRANGES S, NAVAS-Acien A, RAYMAN M P. Selenium status and cardiometabolic health:state of the evidence[J].Nutrition, Metabolism and Cardiovascular Diseases,2010,20(10):754-760.
    [3]
    王含锐,王长印,陈俊宇,等.含硒废水处理方法浅析[J].广州化工,2021,49(5):31-32

    ,37.
    [4]
    刘芳.小球藻去除水体硒的影响机制研究[D].上海:上海交通大学,2017.
    [5]
    LEMLY D A. Aquatic selenium pollution is a global environmental safety issue[J]. Ecotoxicology and Environmental Safety,2004,59(1):44-56.
    [6]
    HE Y Z, XIANG Y J, ZHOU Y Y,et al. Selenium contamination, consequences and remediation techniques in water and soils:a review[J]. Environmental Research,2018,164:288-301.
    [7]
    LORTIE L,GOULD W D,RAJAN S,et al. Reduction of selenate and selenite to elemental selenium by a pseudomonas stutzeri isolate[J]. Applied and Environmental Microbiology,1992,58(12):4042-4044.
    [8]
    MICHIHIKO I,KAZUAKI T,TOMOKO F,et al. Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination[J]. Water Research,2000,34(11):3019-3025.
    [9]
    赖春宇. 氢气/甲烷作为电子供体驱动的硒酸盐和硝酸盐生物还原研究[D].杭州:浙江大学,2017.
    [10]
    LAI C Y,WEN L L,SHI L D,et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology,2016,50(18):10179-10186.
    [11]
    KURODA M, YAMASHITA M, MIWA E, et al. Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacterium bacillus selenatarsenatis SF-1[J]. Journal of Bacteriology, 2011, 193(9):2141-2148.
    [12]
    MACY J M, RECH S, AULING G, et al. Thauera selenatis gen. nov. sp. nov. a member of the beta subclass of proteobacteria with a novel type of anaerobic respiration[J]. International Journal of Systematic Bacteriology, 1993, 43(1):135-142.
    [13]
    SRIDHAR V,YARED B S,WILLIAM A A,et al. Selenite reduction by a denitrifying culture:batch- and packed-bed reactor studies[J]. Applied Microbiology and Biotechnology,2006,71(6):953-962.
    [14]
    LUO J H,CHEN H,HU S H,et al. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm[J]. Environmental Science & Technology,2018,52(7):4006-4012.
    [15]
    YAN S,CHENG K Y,GINIGE M P,et al. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control[J]. Journal of Hazardous Materials,2021,402:123770.
    [16]
    SHI L D, LV P L,WANG M,et al. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction[J]. Science of the Total Environment,2020,732:139310.
    [17]
    DEMENTIN S, ARNOUX P, FRANGIONI B,et al. Access to the active site of periplasmic nitrate reductase:insights from site-directed mutagenesis and zinc inhibition studies[J]. Biochemistry,2007,46(34):9713-9721.
    [18]
    ZHAO H P,VAN G S,TANG Y N,et al. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology,2011,45(23):10155-10162.
    [19]
    BRU D,SARR A,PHILIPPOT L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments[J]. Applied and Environmental Microbiology,2007,73(18):5971-5974.
    [20]
    JUAN C L G,SONIA H,STÉPHANIE H,et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J]. Journal of Microbiological Methods,2004,57(3):399-407.
    [21]
    ZHAO H P, ONTIVEROS-VALENCIA A, TANG Y N,et al. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors[J]. Water Research,2014,54:115-122.
    [22]
    LANGILLE M G I,ZANEVELD J,CAPORASO J G,et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814-821.
    [23]
    LIAO R H, LI Y, YU X M,et al. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment[J]. Journal of Environmental Sciences,2014,26(4):743-753.
    [24]
    ARRUEBARRENA D P A,PEREYRA C M,MORENO R L,et al. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense[J]. FEMS Microbiology Letters,2013,338(1).
    [25]
    JEONGHWAN, JANG, YORIKO, et al. Potentially mobile denitrification functional genes identified in Azospirillum sp. Strain TSH58[J]. Applied and Environmental Microbiology, 2018.
    [26]
    MICHAEL F,JAN K,RUTH M,et al. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(7):1547-1552.
    [27]
    PHILIPPOT L,HØJBERG O. Dissimilatory nitrate reductases in bacteria[J]. Biochimica et Biophysica Acta,1999,1446(1/2):1-23.
    [28]
    GATES A J,LUQUE-ALMAGRO V M,GODDARD A D,et al. A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans[J]. The Biochemical Journal,2011,435(3):743.
    [29]
    SABATY M,AVAZERI C,PIGNOL D,et al. Characterization of the reduction of selenate and tellurite by nitrate reductases[J]. Applied and Environmental Microbiology,2001,67(11):5122-5126.
    [30]
    AVAZÉRI,CÉCILE, RAYMOND J T,et al. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite[J]. Microbiology,1997,143(4):1181-1189.
  • Relative Articles

    [1]GUO Xiang, GUO Xinchao, XIONG Jiaqing, ZHOU Jiajia. Effect of DO and C/N on nitrogen and phosphorus removal efficiency of A2/O-MBR at low temperature[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 118-124. doi: 10.13205/j.hjgc.202501013
    [2]XU Huayi, LI Shanwei, WEI Jing, ZHOU Xiangtong, WU Zhiren. STUDY ON OXYGEN SUPPLY CONDITION AND INFLUENCE OF ALGAL IN PARTIAL NITRIFICATION PROCESS IN A BACTERIA AND ALGAE SYMBIOTIC SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 42-52. doi: 10.13205/j.hjgc.202405006
    [3]LIU Sixuan, LI Yiping, ZHU Ya, WEI Yao, LI Ronghui, WANG Can, CHEN Yu, PENG Yanli, LIANG Dan. INFLUENCE OF WATER LEVEL DESCENDING OF LAYERED RESERVOIRS ON WATER QUALITY CHARACTERISTICS IN SOUTH CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 179-186,194. doi: 10.13205/j.hjgc.202305024
    [4]WANG Xiaoyan, LIANG Meisheng, ZHANG Tong, CHEN Xi, LI Long. IN-SITU PREPARATION OF Cu/Al MODIFIED MCM-41 MOLECULAR SIEVE CATALYST AND ITS DEOXYGENATION PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 192-200. doi: 10.13205/j.hjgc.202307026
    [5]ZHANG Qi, WANG Ya'e, LI Jie, XIE Huina, LI Yuanyi. EFFECT OF DISSOLVED OXYGEN ON CORROSION OF SPONGE IRON IN BIOLOGICAL SPONGE IRON SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 60-65. doi: 10.13205/j.hjgc.202302009
    [6]JING Yu-shu, MOU Run-zhi, JIANG Yi-ming, LIU Zhang-qing, YANG Yan-dong. REDUCING ENERGY AND CHEMICALS CONSUMPTION OF WASTEWATER TREATMENT PLANTS BY ACCURATE AERATION CONTROL: A CASE STUDY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 141-145,165. doi: 10.13205/j.hjgc.202205020
    [7]YUAN Mingzhu, DING Lei, LI Shuang, LI Yonglian. COMPARATIVE STUDY ON REMOVAL OF ARSENIC AND ANTIMONY FROM SPENT EDTA SOIL WASHING SOLUTION BY IRON/ALUMINUM COAGULATION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 121-126. doi: 10.13205/j.hjgc.202204017
    [8]KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
    [9]ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006
    [10]ZHANG Min, TASHIRO Yu-kihiro, SAKAI Ken-ji. OXYGEN SUPPLY PERFORMANCE OF GAS-INDUCING AGITATOR SYSTEM FOR AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 8-12. doi: 10.13205/j.hjgc.202008002
    [11]ZHOU Guo-hua, MA Sha-sha, LI Jun-qi, HU Zuo-peng, LI Xi-chun, LI Peng. ANALYSIS ON EFFECT OF GRATE INLET INTERCEPTOR ON RUNOFF POLLUTION CONTROL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 66-71,76. doi: 10.13205/j.hjgc.202004012
    [12]XU Chen, ZHAN Jian, HU Jia-jun, WANG Liu-peng, CHEN Yun-hui, XUE Zhen-zhou. RESEARCH PROGRESS ON INFLUENCING FACTORS OF RAINWATER RUNOFF RETENTION AND POLLUTION INTERCEPTION EFFECT OF EXTENSIVE GREEN ROOF[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 76-81. doi: 10.13205/j.hjgc.202009013
    [13]ZHENG Kai-kai, ZHOU Zhen, ZHOU Yuan, WANG Yan, ZHOU Jian-chun, LI Ji. A QUANTITIVE STUDY ON PROPORTION OF GROUNDWATER, RIVER WATER AND RAINWATER IN INFLUENT OF URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 75-80. doi: 10.13205/j.hjgc.202007012
    [17]Zhang Lei Zhang Yongli Liang Ying, . EXPERIMENTAL STUDY ON TREATMENT OF WATER-BASED INK WASTEWATER BY COAGULATION-BAF[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 1-3. doi: 10.13205/j.hjgc.201504001
    [18]INFLUENCES OF DO AND AERATION TIME ON DENITRIFICATION PERFORMANCE OF AEROBIC DENITRIFYING BACTERIA[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 62-64. doi: 10.13205/j.hjgc.201412010
  • Cited by

    Periodical cited type(9)

    1. 罗雪静,钟溢健,李金城,陆祖贤,王潇潇,李欣樾. 咖啡果胶水解液作为反硝化碳源的脱氮试验研究. 工业水处理. 2024(06): 117-126 .
    2. 任笑笑,马晶晶,罗忆涵. 环境污水处理中微生物技术的运用. 工业微生物. 2023(01): 19-21 .
    3. 黄涵,王继华. 污水处理厂中微生物群落特性与基因功能探究. 环境科学与技术. 2023(S1): 1-7 .
    4. 郭燕燕,赵由才,宋立杰,兰兵,周涛. 微酸性电解水喷雾消毒对垃圾房生活垃圾微生物群落的影响. 环境污染与防治. 2023(03): 292-299 .
    5. 郑金斌. 固定化微生物技术及其在废水处理中的运用. 低碳世界. 2023(08): 16-18 .
    6. 吴佳璇,贾懿曼,王惠惠,沈玉君,孟海波,丁京涛,范盛远,周亚文,杨瑶瑶,金志帅,李丹阳,张爱琴. 组合式土壤渗滤系统处理三格化粪池出水性能及微生物群落变化研究. 环境工程. 2023(S2): 693-700+627 . 本站查看
    7. 吴桐桐,徐基胜,周云鹏,陈美淇,周谈坛,郭伟,陈金林,赵炳梓. 黄河三角洲不同生境土壤理化特性及细菌群落结构特征. 农业环境科学学报. 2022(10): 2250-2261 .
    8. 郭雷,肖芃颖,袁港,季虹谷,向施吉,苏莉洪. 外源性海藻糖强化好氧脱氮菌处理高盐废水的菌群特性. 环境工程学报. 2022(10): 3448-3459 .
    9. 李理,陈才,金泽坤,王友本. 生物滴滤池的微生物多样性分析及VOC降解菌的筛选. 华南理工大学学报(自然科学版). 2021(11): 57-68 .

    Other cited types(9)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.3 %FULLTEXT: 15.3 %META: 84.7 %META: 84.7 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 73.6 %其他: 73.6 %商洛: 1.4 %商洛: 1.4 %张家口: 8.3 %张家口: 8.3 %温州: 1.4 %温州: 1.4 %漯河: 2.8 %漯河: 2.8 %芒廷维尤: 5.6 %芒廷维尤: 5.6 %西宁: 5.6 %西宁: 5.6 %长沙: 1.4 %长沙: 1.4 %其他商洛张家口温州漯河芒廷维尤西宁长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (577) PDF downloads(15) Cited by(18)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return