Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HE Shengjie, ZHOU Li, ZHU Jia, GAO Jingsi. SIMULATION OF IMPACT OF LOW B/C SEWAGE ON AN A2/O PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 81-88. doi: 10.13205/j.hjgc.202203013
Citation: HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007

RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION

doi: 10.13205/j.hjgc.202111007
  • Received Date: 2021-06-29
    Available Online: 2022-01-26
  • It is more economical and sustainable that using biological removal method to treat selenium pollution in water bodies. However, most selenate-reducing model bacteria strains have poor environmental adaptability and are difficult in engineering applications. Using certain denitrifying bacteria with selenate reducing ability to treat selenium pollution is a new attempt. This study focused on the selenate-reducing flora dominated by denitrifying bacteria, by using the comparative analysis of substrate reduction rate, combined with the microbial community analysis and functional gene quantification. And we confirmed that periplasmic (Nap) nitrate reductase dominated the selenite reduction, clarified the role of denitrifying bacteria in the selenate reduction process, and further enriched the selenium-reducing flora. Furthermore, we proposed a new selenate removal strategy, that was, enriching the selenate-reducing activated sludge using nitrate as electron acceptor, greatly increased the selenate reduction efficiency and was conducive to engineering application.
  • [1]
    MORENO-Reyes R, SUETENS C, MATHIEU F, et al. Kashin-Beck osteoarthropathy in rural Tibet in relation to selenium and iodine status[J]. New England Journal of Medicine,1998,339(16):1112-1120.
    [2]
    STRANGES S, NAVAS-Acien A, RAYMAN M P. Selenium status and cardiometabolic health:state of the evidence[J].Nutrition, Metabolism and Cardiovascular Diseases,2010,20(10):754-760.
    [3]
    王含锐,王长印,陈俊宇,等.含硒废水处理方法浅析[J].广州化工,2021,49(5):31-32

    ,37.
    [4]
    刘芳.小球藻去除水体硒的影响机制研究[D].上海:上海交通大学,2017.
    [5]
    LEMLY D A. Aquatic selenium pollution is a global environmental safety issue[J]. Ecotoxicology and Environmental Safety,2004,59(1):44-56.
    [6]
    HE Y Z, XIANG Y J, ZHOU Y Y,et al. Selenium contamination, consequences and remediation techniques in water and soils:a review[J]. Environmental Research,2018,164:288-301.
    [7]
    LORTIE L,GOULD W D,RAJAN S,et al. Reduction of selenate and selenite to elemental selenium by a pseudomonas stutzeri isolate[J]. Applied and Environmental Microbiology,1992,58(12):4042-4044.
    [8]
    MICHIHIKO I,KAZUAKI T,TOMOKO F,et al. Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination[J]. Water Research,2000,34(11):3019-3025.
    [9]
    赖春宇. 氢气/甲烷作为电子供体驱动的硒酸盐和硝酸盐生物还原研究[D].杭州:浙江大学,2017.
    [10]
    LAI C Y,WEN L L,SHI L D,et al. Selenate and nitrate bioreductions using methane as the electron donor in a membrane biofilm reactor[J]. Environmental Science & Technology,2016,50(18):10179-10186.
    [11]
    KURODA M, YAMASHITA M, MIWA E, et al. Molecular cloning and characterization of the srdBCA operon, encoding the respiratory selenate reductase complex, from the selenate-reducing bacterium bacillus selenatarsenatis SF-1[J]. Journal of Bacteriology, 2011, 193(9):2141-2148.
    [12]
    MACY J M, RECH S, AULING G, et al. Thauera selenatis gen. nov. sp. nov. a member of the beta subclass of proteobacteria with a novel type of anaerobic respiration[J]. International Journal of Systematic Bacteriology, 1993, 43(1):135-142.
    [13]
    SRIDHAR V,YARED B S,WILLIAM A A,et al. Selenite reduction by a denitrifying culture:batch- and packed-bed reactor studies[J]. Applied Microbiology and Biotechnology,2006,71(6):953-962.
    [14]
    LUO J H,CHEN H,HU S H,et al. Microbial selenate reduction driven by a denitrifying anaerobic methane oxidation biofilm[J]. Environmental Science & Technology,2018,52(7):4006-4012.
    [15]
    YAN S,CHENG K Y,GINIGE M P,et al. Optimization of nitrate and selenate reduction in an ethanol-fed fluidized bed reactor via redox potential feedback control[J]. Journal of Hazardous Materials,2021,402:123770.
    [16]
    SHI L D, LV P L,WANG M,et al. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction[J]. Science of the Total Environment,2020,732:139310.
    [17]
    DEMENTIN S, ARNOUX P, FRANGIONI B,et al. Access to the active site of periplasmic nitrate reductase:insights from site-directed mutagenesis and zinc inhibition studies[J]. Biochemistry,2007,46(34):9713-9721.
    [18]
    ZHAO H P,VAN G S,TANG Y N,et al. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor[J]. Environmental Science & Technology,2011,45(23):10155-10162.
    [19]
    BRU D,SARR A,PHILIPPOT L. Relative abundances of proteobacterial membrane-bound and periplasmic nitrate reductases in selected environments[J]. Applied and Environmental Microbiology,2007,73(18):5971-5974.
    [20]
    JUAN C L G,SONIA H,STÉPHANIE H,et al. Quantification of a novel group of nitrate-reducing bacteria in the environment by real-time PCR[J]. Journal of Microbiological Methods,2004,57(3):399-407.
    [21]
    ZHAO H P, ONTIVEROS-VALENCIA A, TANG Y N,et al. Removal of multiple electron acceptors by pilot-scale, two-stage membrane biofilm reactors[J]. Water Research,2014,54:115-122.
    [22]
    LANGILLE M G I,ZANEVELD J,CAPORASO J G,et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences[J]. Nature Biotechnology,2013,31(9):814-821.
    [23]
    LIAO R H, LI Y, YU X M,et al. Performance and microbial diversity of an expanded granular sludge bed reactor for high sulfate and nitrate waste brine treatment[J]. Journal of Environmental Sciences,2014,26(4):743-753.
    [24]
    ARRUEBARRENA D P A,PEREYRA C M,MORENO R L,et al. Denitrification-derived nitric oxide modulates biofilm formation in Azospirillum brasilense[J]. FEMS Microbiology Letters,2013,338(1).
    [25]
    JEONGHWAN, JANG, YORIKO, et al. Potentially mobile denitrification functional genes identified in Azospirillum sp. Strain TSH58[J]. Applied and Environmental Microbiology, 2018.
    [26]
    MICHAEL F,JAN K,RUTH M,et al. Denitratisoma oestradiolicum gen. nov., sp. nov., a 17β-oestradiol-degrading, denitrifying betaproteobacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2006,56(7):1547-1552.
    [27]
    PHILIPPOT L,HØJBERG O. Dissimilatory nitrate reductases in bacteria[J]. Biochimica et Biophysica Acta,1999,1446(1/2):1-23.
    [28]
    GATES A J,LUQUE-ALMAGRO V M,GODDARD A D,et al. A composite biochemical system for bacterial nitrate and nitrite assimilation as exemplified by Paracoccus denitrificans[J]. The Biochemical Journal,2011,435(3):743.
    [29]
    SABATY M,AVAZERI C,PIGNOL D,et al. Characterization of the reduction of selenate and tellurite by nitrate reductases[J]. Applied and Environmental Microbiology,2001,67(11):5122-5126.
    [30]
    AVAZÉRI,CÉCILE, RAYMOND J T,et al. Tellurite reductase activity of nitrate reductase is responsible for the basal resistance of Escherichia coli to tellurite[J]. Microbiology,1997,143(4):1181-1189.
  • Relative Articles

    [1]SUN Shujing, GUO Yibing, GUO Siyan, ZHAO Yan, LIN Lin. A SIMULATION MODEL OF EMERGENCY MONITORING LINKAGE AND JOINT DEFENSE FOR ENVIRONMENTAL EMERGENCIES BASED ON PETRI NET[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 167-172. doi: 10.13205/j.hjgc.202408020
    [2]BAI Yangyang, HE Chao, LI Jiaqiang, ZHAO Longqing, LI Ju, XU Jiachen, CHEN Zhenyu. SPATIOTEMPORAL CHARACTERISTICS ANALYSIS OF HEAVY-DUTY DIESEL TRUCK EMISSIONS BASED ON GPS DATA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 63-70,100. doi: 10.13205/j.hjgc.202304009
    [3]GU Xiao-dan, HUANG Yong, DING Yong-wei, HUANG Ji-hui. DIAGNOSIS AND ANALYSIS BASED ON MATHEMATICAL MODEL ON PROBLEMS IN SEWAGE TREATMENT PLANTS IN VILLAGES AND TOWNS WITH LOW LOAD OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 9-15. doi: 10.13205/j.hjgc.202105002
    [4]YUAN Jian-ye, NAN Xin-yuan, CAI Xin, LI Cheng-rong. GARBAGE IMAGE CLASSIFICATION BY LIGHTWEIGHT RESIDUAL NETWORK[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 110-115. doi: 10.13205/j.hjgc.202102017
    [5]HUANG Tao, WANG Jian-long, SHI De-wen, JIANG Qi-gui, LI Xiao-ning. EFFECT OF RUNOFF FLOW PATH ON WATER QUANTITY CONTROL EVALUATION BY SWMM MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(4): 170-175. doi: 10.13205/j.hjgc.202004030
    [6]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
    [17]Zhang Jing, Zou Ping, Chen Zhengyao, Zhao Siqi, Sun Peishi, Bi Xiaoyi, Wang Yanru, Wang Xingchun, Wang Jie. ENHANCEMENT RESEARCH ON MICROBIAL PURIFICATION EFFICIENCY OF NO AND NOx IN SIMULATED FLUE GAS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 84-88. doi: 10.13205/j.hjgc.201506019
  • Cited by

    Periodical cited type(7)

    1. 黎承波,莫莉萍,赵银军,林清,梁蕊芬. 柳州市某金属冶炼厂遗留用地地下水重金属污染分析与健康风险评价. 南宁师范大学学报(自然科学版). 2023(03): 76-86 .
    2. 毕傲睿,沈超,朱洪云,张永成,江松. 基于直觉模糊信息的地下储气库安全性可拓评价模型研究. 安全与环境工程. 2022(04): 172-180 .
    3. 章康宁,李湘凌,陈富荣,汤金来,杜国强. 皖江地区农村地下水健康风险评估. 合肥工业大学学报(自然科学版). 2022(09): 1240-1247 .
    4. 徐颖,马艺铭,张溪,彭健,宿超然,史永强,汤家喜. 某生活垃圾填埋场周边地下水饮水途径健康风险评价. 生态环境学报. 2021(03): 558-568 .
    5. 马海珍,段磊,朱世峰,杨戈芝,王文科,闫姿呈,靳博文. 基于梯形模糊数的地下水源地环境健康风险评价. 西北地质. 2021(02): 248-258 .
    6. 谭義,李泽宇,张潇,杨昌睿. 基于模糊可拓理论的山区铁路线路方案对比研究. 铁道标准设计. 2020(03): 18-22+30 .
    7. 徐颖,李梦雪,董心月,马艺铭,朱永乐,汤家喜. 氟化工园区及周边地下水健康风险及脆弱性评价. 环境科学学报. 2020(06): 2300-2310 .

    Other cited types(12)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.5 %FULLTEXT: 13.5 %META: 82.2 %META: 82.2 %PDF: 4.3 %PDF: 4.3 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.7 %其他: 19.7 %[]: 0.5 %[]: 0.5 %上海: 1.0 %上海: 1.0 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %北京: 1.0 %北京: 1.0 %南京: 1.0 %南京: 1.0 %合肥: 2.9 %合肥: 2.9 %天津: 0.5 %天津: 0.5 %太原: 0.5 %太原: 0.5 %常德: 0.5 %常德: 0.5 %广州: 0.5 %广州: 0.5 %张家口: 1.4 %张家口: 1.4 %成都: 1.0 %成都: 1.0 %昆明: 0.5 %昆明: 0.5 %晋城: 1.0 %晋城: 1.0 %朝阳: 0.5 %朝阳: 0.5 %杭州: 1.0 %杭州: 1.0 %武汉: 1.0 %武汉: 1.0 %江门: 0.5 %江门: 0.5 %济源: 0.5 %济源: 0.5 %深圳: 0.5 %深圳: 0.5 %漯河: 1.9 %漯河: 1.9 %潍坊: 1.0 %潍坊: 1.0 %石家庄: 2.4 %石家庄: 2.4 %芒廷维尤: 39.9 %芒廷维尤: 39.9 %芝加哥: 1.4 %芝加哥: 1.4 %蚌埠: 0.5 %蚌埠: 0.5 %衢州: 1.0 %衢州: 1.0 %西宁: 6.3 %西宁: 6.3 %西安: 0.5 %西安: 0.5 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.3 %运城: 4.3 %遵义: 1.0 %遵义: 1.0 %郑州: 1.9 %郑州: 1.9 %长沙: 1.0 %长沙: 1.0 %其他[]上海临汾保定北京南京合肥天津太原常德广州张家口成都昆明晋城朝阳杭州武汉江门济源深圳漯河潍坊石家庄芒廷维尤芝加哥蚌埠衢州西宁西安贵阳运城遵义郑州长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (580) PDF downloads(15) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return