Citation: | LIANG Bin, FENG Shi-min, ZHANG Yong-ming. ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010 |
[1] |
WANG J G, SUN Z R. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process[J]. Journal of Hazardous Materials, 2020, 392, 122293.
|
[2] |
KAVITHA D, JENISHA J M J. Treatment of 2,4,6-trichlorophenol using agricultural by-products[J]. Materials Today:Proceedings, 2020, 33:4385-4390.
|
[3] |
ALI M H H, AL-QAHTANI K M, EL-SAYED S M. Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide[J]. Egyptian Journal of Aquatic Research, 2019, 45:321-328.
|
[4] |
ZHU M Y, LU J, ZHAO Y T, et al. Zhu. Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments[J]. Chemosphere, 2021, 279:130537.
|
[5] |
LI W, WANG Z M, LIAO H Y, et al. Enhanced degradation of 2,4,6-trichlorophenol by activated peroxymonosulfate with sulfur doped copper manganese bimetallic oxides[J]. Chemical Engineering Journal, 2021, 417:128121.
|
[6] |
施汉昌,王颖哲,韩英健,等. 补充碳源对厌氧生物处理2,4,6-三氯酚的影响[J]. 环境科学, 1999, 20(5):11-15.
|
[7] |
李蓉洁,白琪,陈斌,等.添加有机酸加速2,4,6-三氯酚的生物降解[J]. 河南城建学院学报,2014,24(4):47-51.
|
[8] |
张雨婷, 张辰媛, 朱格, 等. 蜂窝陶瓷为生物膜载体的光催化/生物一体式反应器降解2,4,6-三氯酚[J]. 陶瓷学报, 2017, 38(5):79-82.
|
[9] |
MARSOLEK M D, RITTMANN E B. Biodegradation of 2, 4,5-trichlorophenol by mixed microbial communities:biorecalcitrance, inhibition, and adaptation[J]. Biodegradation, 2007, 18(3):351-358.
|
[10] |
ZHANG Y M, SUN X, CHEN L J, et al. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization[J]. Biodegradation, 2012, 23(1):189-198.
|
[11] |
ZHANG Y M, PU X J, FANG M M, et al. 2,4,6-trichlorophenol (TCP) photobiodegradation and its effect on community structure[J]. Biodegradation, 2012, 23(4):575-583.
|
[12] |
LIN X Q, LI Z L, LIANG B, et al. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation[J]. Water Research, 2019, 162:236-245.
|
[13] |
CHOI J H, KIN Y H, CHOI S J. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers:laboratory studies[J]. Chemosphere, 2007, 67(8):1551-1557.
|
[14] |
SONG J X, ZHAO Q, GUO J, et al. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6-trichlorophenol[J]. Science of the Total Environment, 2018, 651:1368-1376.
|
[15] |
FRICKER A D, LAROE S L, SHEA M E, et al. Dehalococcoides mccartyi Strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes[J]. Environmental Science & Technology, 2014, 48(24):14300-14308.
|
[16] |
YAN N, AN M, CHU J Y, et al. More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria[J]. Bioresource Technology, 2021, 326:124738.
|
[17] |
ZHU M C, LI N, LU Y Z, et al. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater[J]. Bioresource Technology, 2020, 317:124001.
|
[18] |
KAMALI M, GAMEIRO T, COSTA M E, et al. Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge:a kinetic study[J]. Chemical Engineering Journal, 2019, 378:122186.
|
[19] |
AILIJIANG N, CHANG J, LIANG P, et al. Electrical stimulation on biodegradation of phenolics in a novel anaerobic-aerobic-coupled upflow bioelectrochemical reactor[J]. Chemical Engineering Journal, 2021, 421:127840.
|
[20] |
RITTMANN B E, MCCARTY P L. Environmental Biotechnology:principles and Applications, 2nd ed.[M]. McGraw-Hill Book Co., New York, 2020.
|
[21] |
SONG J X, WANG W B, LI R J, et al. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP)[J]. Biodegradation, 2016, 27(1):59-67.
|
[22] |
CAO L F, ZHANG C Y, ZOU S S, et al. Simultaneous anaerobic and aerobic transformations of nitrobenzene[J]. Journal of Environmental Management, 2018, 226:264-269.
|
[23] |
ZHANG Y M, WANG L, RITTMANN B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1977-1985.
|
[24] |
ZHANG Y M, LIU H, SHI W, et al. Photobiodegradation of phenol with ultraviolet irradiation of new ceramic biofilm carriers[J]. Biodegradation, 2010, 21(6):881-887.
|
1. | 徐水太,李晞薇,董信. 中国建筑业碳排放强度的空间特征与影响因素分析. 科技导报. 2024(06): 103-111 . ![]() | |
2. | 徐坚,张蓝天,钱宇佳. 新型城镇化背景下云南省建筑业碳排放特征及影响因素研究. 环境科学导刊. 2024(03): 19-26 . ![]() | |
3. | 刘柏建. 经济增长、产业集中度与建筑业碳排放——基于VAR模型的实证研究. 工程建设. 2023(04): 73-78 . ![]() | |
4. | 张新生,任明月,陈章政. 基于CEEMD-SSA-ELM方法的建筑业碳排放预测研究. 生态经济. 2023(10): 33-39+88 . ![]() | |
5. | 戴林琳,封昌炜,周子杰,金丹. 中国县域尺度碳收支的时空演变研究. 生态经济. 2023(11): 31-39+59 . ![]() | |
6. | 吴泽洲,黄浩全,陈湘生,李建军,何秋凤,李奥,黄均,林雨瀚,刘星语,王佳豪. “双碳”目标下建筑业低碳转型对策研究. 中国工程科学. 2023(05): 202-209 . ![]() | |
7. | 俞洁,张勇,李清瑶. 制造业碳减排的脱钩效应及驱动机制——一个二维分析框架. 环境工程. 2023(10): 150-162 . ![]() | |
8. | 王洪强,郭秋静,李思茹,张英婕. 建筑业—城镇化—经济协调发展测度研究——基于我国31个省际数据的实证分析. 管理现代化. 2022(02): 9-16 . ![]() | |
9. | 魏光普,康瑜,范浩文,于晓燕,马明. 重工业城市建筑业碳排放核算与预测研究. 生态经济. 2022(09): 43-48 . ![]() | |
10. | 魏好如意,陈艳,李龙,汪竹英. 建筑业碳排放研究的知识图谱可视化分析. 河南工业大学学报(社会科学版). 2022(04): 28-35 . ![]() | |
11. | 纪凡荣,李琦. 基于马尔可夫链的建筑业碳排放的省域差异及时空演变. 建设科技. 2022(22): 21-25 . ![]() | |
12. | 侯雨凝,于跃奇. 可持续发展背景下大型建筑企业ESG绩效评价研究. 建筑经济. 2022(S2): 372-376 . ![]() | |
13. | 张哲,任怡萌,董会娟. 城市碳排放达峰和低碳发展研究:以上海市为例. 环境工程. 2020(11): 12-18 . ![]() | |
14. | 高思慧,刘伊生,李欣桐,原境彪. 中国建筑业碳排放影响因素与预测研究. 河南科学. 2019(08): 1344-1350 . ![]() | |
15. | 郑颖,逯非,杨师帅,王效科,刘晶茹. 城市能源消费CO_2排放及其影响因素研究. 环境保护科学. 2019(05): 85-94 . ![]() | |
16. | 蔡佳丽,张陶新. 湖南省分行业碳排放与经济增长相关性研究——基于EKC曲线分析. 中南林业科技大学学报(社会科学版). 2019(05): 50-56 . ![]() | |
17. | 赵冬蕾,刘伊生. 基于系统动力学的中国建筑业碳排放预测研究. 河南科学. 2019(12): 2025-2033 . ![]() | |
18. | 宋金昭,苑向阳,王晓平. 中国建筑业碳排放强度影响因素分析. 环境工程. 2018(01): 178-182 . ![]() | |
19. | 江思雨,刘加俊. 基于灰色马尔可夫理论的建筑业碳排放量预测. 洛阳理工学院学报(自然科学版). 2018(02): 6-10 . ![]() | |
20. | 马晓君,董碧滢,于渊博,王常欣,杨倩. 东北三省能源消费碳排放测度及影响因素. 中国环境科学. 2018(08): 3170-3179 . ![]() | |
21. | 金柏辉,李玮,张荣霞,李国敏. 中国建筑业碳排放影响因素空间效应分析. 科技管理研究. 2018(24): 238-245 . ![]() | |
22. | 王剑,薛东前,马蓓蓓. 基于GFI模型的西安市能源消费碳排放因素分解研究. 干旱区地理. 2018(06): 1388-1395 . ![]() |