Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIANG Bin, FENG Shi-min, ZHANG Yong-ming. ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010
Citation: LIANG Bin, FENG Shi-min, ZHANG Yong-ming. ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 83-88. doi: 10.13205/j.hjgc.202111010

ACCELERATION OF 2,4,6-TRICHLOROPHENOL BIODEGRADATION THROUGH AEROBIC AND ANAEROBIC CONDITION ALTERNATION

doi: 10.13205/j.hjgc.202111010
  • Received Date: 2021-06-08
    Available Online: 2022-01-26
  • 2,4,6-trichlorophenol (TCP) is a recalcitrant organic compound, and reductive dechlorination is the key step for biodegradation of TCP, which is usually carried out in anaerobic conditions. Chloride ion in the para-position of TCP is harder to remove compared to Cl in the ortho-position, which means that 4-chlorophenol (4-CP), an intermediate of TCP reductive dechlorination, is difficult to further biodegrade in anaerobic conditions. However, the 4-CP was effectively biodegraded when the anaerobic mode was switched into an aerobic mode. Based on this advantage of alternating between anaerobic and aerobic modes, a vertical baffled bioreactor (VBBR) was employed for TCP biodegradation. Compared with anaerobic biodegradation alone, alternating between anaerobic and aerobic modes significantly enhanced TCP biodegradation. For an initial TCP concentration of 50 μmol/L, the time for complete removal of TCP was shortened from 34 h to less than 12 h. The mechanism was the relief of inhibitions by TCP-biodegradation intermediates. For example, phenol, an intermediate of 4-CP reductive dechlorination, got more rapid biodegradation in the aerobic mode, which relieved its inhibition and enhanced the biodegradation of TCP in the anaerobic mode.
  • [1]
    WANG J G, SUN Z R. Exploring the effects of carbon source level on the degradation of 2,4,6-trichlorophenol in the co-metabolism process[J]. Journal of Hazardous Materials, 2020, 392, 122293.
    [2]
    KAVITHA D, JENISHA J M J. Treatment of 2,4,6-trichlorophenol using agricultural by-products[J]. Materials Today:Proceedings, 2020, 33:4385-4390.
    [3]
    ALI M H H, AL-QAHTANI K M, EL-SAYED S M. Enhancing photodegradation of 2,4,6 trichlorophenol and organic pollutants in industrial effluents using nanocomposite of TiO2 doped with reduced graphene oxide[J]. Egyptian Journal of Aquatic Research, 2019, 45:321-328.
    [4]
    ZHU M Y, LU J, ZHAO Y T, et al. Zhu. Photochemical reactions between superoxide ions and 2,4,6-trichlorophenol in atmospheric aqueous environments[J]. Chemosphere, 2021, 279:130537.
    [5]
    LI W, WANG Z M, LIAO H Y, et al. Enhanced degradation of 2,4,6-trichlorophenol by activated peroxymonosulfate with sulfur doped copper manganese bimetallic oxides[J]. Chemical Engineering Journal, 2021, 417:128121.
    [6]
    施汉昌,王颖哲,韩英健,等. 补充碳源对厌氧生物处理2,4,6-三氯酚的影响[J]. 环境科学, 1999, 20(5):11-15.
    [7]
    李蓉洁,白琪,陈斌,等.添加有机酸加速2,4,6-三氯酚的生物降解[J]. 河南城建学院学报,2014,24(4):47-51.
    [8]
    张雨婷, 张辰媛, 朱格, 等. 蜂窝陶瓷为生物膜载体的光催化/生物一体式反应器降解2,4,6-三氯酚[J]. 陶瓷学报, 2017, 38(5):79-82.
    [9]
    MARSOLEK M D, RITTMANN E B. Biodegradation of 2, 4,5-trichlorophenol by mixed microbial communities:biorecalcitrance, inhibition, and adaptation[J]. Biodegradation, 2007, 18(3):351-358.
    [10]
    ZHANG Y M, SUN X, CHEN L J, et al. Integrated photocatalytic-biological reactor for accelerated 2,4,6-trichlorophenol degradation and mineralization[J]. Biodegradation, 2012, 23(1):189-198.
    [11]
    ZHANG Y M, PU X J, FANG M M, et al. 2,4,6-trichlorophenol (TCP) photobiodegradation and its effect on community structure[J]. Biodegradation, 2012, 23(4):575-583.
    [12]
    LIN X Q, LI Z L, LIANG B, et al. Accelerated microbial reductive dechlorination of 2,4,6-trichlorophenol by weak electrical stimulation[J]. Water Research, 2019, 162:236-245.
    [13]
    CHOI J H, KIN Y H, CHOI S J. Reductive dechlorination and biodegradation of 2,4,6-trichlorophenol using sequential permeable reactive barriers:laboratory studies[J]. Chemosphere, 2007, 67(8):1551-1557.
    [14]
    SONG J X, ZHAO Q, GUO J, et al. The microbial community responsible for dechlorination and benzene ring opening during anaerobic degradation of 2,4,6-trichlorophenol[J]. Science of the Total Environment, 2018, 651:1368-1376.
    [15]
    FRICKER A D, LAROE S L, SHEA M E, et al. Dehalococcoides mccartyi Strain JNA dechlorinates multiple chlorinated phenols including pentachlorophenol and harbors at least 19 reductive dehalogenase homologous genes[J]. Environmental Science & Technology, 2014, 48(24):14300-14308.
    [16]
    YAN N, AN M, CHU J Y, et al. More rapid dechlorination of 2,4-dichlorophenol using acclimated bacteria[J]. Bioresource Technology, 2021, 326:124738.
    [17]
    ZHU M C, LI N, LU Y Z, et al. The performance and microbial communities of an anaerobic membrane bioreactor for treating fluctuating 2-chlorophenol wastewater[J]. Bioresource Technology, 2020, 317:124001.
    [18]
    KAMALI M, GAMEIRO T, COSTA M E, et al. Enhanced biodegradation of phenolic wastewaters with acclimatized activated sludge:a kinetic study[J]. Chemical Engineering Journal, 2019, 378:122186.
    [19]
    AILIJIANG N, CHANG J, LIANG P, et al. Electrical stimulation on biodegradation of phenolics in a novel anaerobic-aerobic-coupled upflow bioelectrochemical reactor[J]. Chemical Engineering Journal, 2021, 421:127840.
    [20]
    RITTMANN B E, MCCARTY P L. Environmental Biotechnology:principles and Applications, 2nd ed.[M]. McGraw-Hill Book Co., New York, 2020.
    [21]
    SONG J X, WANG W B, LI R J, et al. UV photolysis for enhanced phenol biodegradation in the presence of 2,4,6-trichlorophenol (TCP)[J]. Biodegradation, 2016, 27(1):59-67.
    [22]
    CAO L F, ZHANG C Y, ZOU S S, et al. Simultaneous anaerobic and aerobic transformations of nitrobenzene[J]. Journal of Environmental Management, 2018, 226:264-269.
    [23]
    ZHANG Y M, WANG L, RITTMANN B E. Integrated photocatalytic-biological reactor for accelerated phenol mineralization[J]. Applied Microbiology and Biotechnology, 2010, 86(6):1977-1985.
    [24]
    ZHANG Y M, LIU H, SHI W, et al. Photobiodegradation of phenol with ultraviolet irradiation of new ceramic biofilm carriers[J]. Biodegradation, 2010, 21(6):881-887.
  • Relative Articles

    [1]LIU Yueting, ZHANG Qiang, JIANG Xiaohui, JI Yajun, YUAN Xiaohong, XIE Wenhao, ZHENG Lielong, LUO Jiaxin. SPATIAL-TEMPORAL CHARACTERISTICS OF CARBON EMISSIONS IN URBAN SEWAGE SYSTEM IN XI’AN AND ITS DOMINANT DRIVING FACTORS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 40-49. doi: 10.13205/j.hjgc.202411005
    [2]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [3]SU Yue-huan, ZHANG Yu, DUAN Hua-bo, LI Qiang-feng. RESEARCH ON ENVIRONMENTAL IMPACT ASSESSMENT AND EMISSION REDUCTION POTENTIAL OF METRO CONSTRUCTION: A CASE STUDY IN SHENZHEN, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 184-192,236. doi: 10.13205/j.hjgc.202205027
    [4]LIU Xin, WANG Jun-yan. RESEARCH ON SPATIAL DISTRIBUTION CHARACTERISTICS OF INFORMAL CONSTRUCTION WASTE SITES: A CASE STUDY OF CHANGPING DISTRICT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 193-198,233. doi: 10.13205/j.hjgc.202112029
    [5]ZHANG Zhe, REN Yi-meng, DONG Hui-juan. RESEARCH ON CARBON EMISSIONS PEAKING AND LOW-CARBON DEVELOPMENT OF CITIES: A CASE OF SHANGHAI[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 12-18. doi: 10.13205/j.hjgc.202011003
    [17]Zhang Li Sun Jian, . THE ANALYSIS OF THE COUPLING RELATIONSHIP BETWEEN THE URBAN SYSTEM AND CLIMATE CHANGE: TAKING NANJING AS AN EXAMPLE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 71-75. doi: 10.13205/j.hjgc.201506016
    [18]Zhang Chengzhong, Ma Wenjing, Li Yong, Han Deming, Dai Zhiguang, Li Wentao, Han Jing. ANALYSIS OF CARBON COMPONENTS IN PM2. 5 DURING LATE SUMMER AND EARLY AUTUMN OF XI’AN CITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 95-99. doi: 10.13205/j.hjgc.201505020
    [19]VARIATION ANALYSIS OF NOISE IN XI'AN FUNCTIONAL AREA FOR YEARS AND RESEARCH ON CONTROL COUNTERMEASURE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 117-119. doi: 10.13205/j.hjgc.201412020
  • Cited by

    Periodical cited type(22)

    1. 徐水太,李晞薇,董信. 中国建筑业碳排放强度的空间特征与影响因素分析. 科技导报. 2024(06): 103-111 .
    2. 徐坚,张蓝天,钱宇佳. 新型城镇化背景下云南省建筑业碳排放特征及影响因素研究. 环境科学导刊. 2024(03): 19-26 .
    3. 刘柏建. 经济增长、产业集中度与建筑业碳排放——基于VAR模型的实证研究. 工程建设. 2023(04): 73-78 .
    4. 张新生,任明月,陈章政. 基于CEEMD-SSA-ELM方法的建筑业碳排放预测研究. 生态经济. 2023(10): 33-39+88 .
    5. 戴林琳,封昌炜,周子杰,金丹. 中国县域尺度碳收支的时空演变研究. 生态经济. 2023(11): 31-39+59 .
    6. 吴泽洲,黄浩全,陈湘生,李建军,何秋凤,李奥,黄均,林雨瀚,刘星语,王佳豪. “双碳”目标下建筑业低碳转型对策研究. 中国工程科学. 2023(05): 202-209 .
    7. 俞洁,张勇,李清瑶. 制造业碳减排的脱钩效应及驱动机制——一个二维分析框架. 环境工程. 2023(10): 150-162 . 本站查看
    8. 王洪强,郭秋静,李思茹,张英婕. 建筑业—城镇化—经济协调发展测度研究——基于我国31个省际数据的实证分析. 管理现代化. 2022(02): 9-16 .
    9. 魏光普,康瑜,范浩文,于晓燕,马明. 重工业城市建筑业碳排放核算与预测研究. 生态经济. 2022(09): 43-48 .
    10. 魏好如意,陈艳,李龙,汪竹英. 建筑业碳排放研究的知识图谱可视化分析. 河南工业大学学报(社会科学版). 2022(04): 28-35 .
    11. 纪凡荣,李琦. 基于马尔可夫链的建筑业碳排放的省域差异及时空演变. 建设科技. 2022(22): 21-25 .
    12. 侯雨凝,于跃奇. 可持续发展背景下大型建筑企业ESG绩效评价研究. 建筑经济. 2022(S2): 372-376 .
    13. 张哲,任怡萌,董会娟. 城市碳排放达峰和低碳发展研究:以上海市为例. 环境工程. 2020(11): 12-18 . 本站查看
    14. 高思慧,刘伊生,李欣桐,原境彪. 中国建筑业碳排放影响因素与预测研究. 河南科学. 2019(08): 1344-1350 .
    15. 郑颖,逯非,杨师帅,王效科,刘晶茹. 城市能源消费CO_2排放及其影响因素研究. 环境保护科学. 2019(05): 85-94 .
    16. 蔡佳丽,张陶新. 湖南省分行业碳排放与经济增长相关性研究——基于EKC曲线分析. 中南林业科技大学学报(社会科学版). 2019(05): 50-56 .
    17. 赵冬蕾,刘伊生. 基于系统动力学的中国建筑业碳排放预测研究. 河南科学. 2019(12): 2025-2033 .
    18. 宋金昭,苑向阳,王晓平. 中国建筑业碳排放强度影响因素分析. 环境工程. 2018(01): 178-182 . 本站查看
    19. 江思雨,刘加俊. 基于灰色马尔可夫理论的建筑业碳排放量预测. 洛阳理工学院学报(自然科学版). 2018(02): 6-10 .
    20. 马晓君,董碧滢,于渊博,王常欣,杨倩. 东北三省能源消费碳排放测度及影响因素. 中国环境科学. 2018(08): 3170-3179 .
    21. 金柏辉,李玮,张荣霞,李国敏. 中国建筑业碳排放影响因素空间效应分析. 科技管理研究. 2018(24): 238-245 .
    22. 王剑,薛东前,马蓓蓓. 基于GFI模型的西安市能源消费碳排放因素分解研究. 干旱区地理. 2018(06): 1388-1395 .

    Other cited types(32)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040510152025
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 85.2 %META: 85.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %上海: 2.1 %上海: 2.1 %伊利诺伊州: 0.4 %伊利诺伊州: 0.4 %北京: 3.8 %北京: 3.8 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %南通: 0.4 %南通: 0.4 %台州: 1.3 %台州: 1.3 %嘉兴: 0.4 %嘉兴: 0.4 %天津: 0.8 %天津: 0.8 %常州: 0.8 %常州: 0.8 %成都: 0.4 %成都: 0.4 %扬州: 1.3 %扬州: 1.3 %杭州: 0.8 %杭州: 0.8 %深圳: 0.4 %深圳: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 2.5 %漯河: 2.5 %芒廷维尤: 59.3 %芒廷维尤: 59.3 %苏州: 0.4 %苏州: 0.4 %衢州: 1.3 %衢州: 1.3 %西宁: 2.5 %西宁: 2.5 %西安: 0.4 %西安: 0.4 %郑州: 0.4 %郑州: 0.4 %重庆: 0.4 %重庆: 0.4 %长沙: 0.4 %长沙: 0.4 %其他上海伊利诺伊州北京十堰南京南通台州嘉兴天津常州成都扬州杭州深圳湖州漯河芒廷维尤苏州衢州西宁西安郑州重庆长沙

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (227) PDF downloads(10) Cited by(54)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return