Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
ZHANG Qiuying, LI Liang, BIAN Di. RESEARCH PROGRESS ON EFFECT OF ORGANIC MATTERS ON ANAMMOX REACTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 190-195. doi: 10.13205/j.hjgc.202201028
Citation: DAI Li-ping, ZHU Han-quan, KE Xiong, CHEN Ri-yao, LIU Yao-xing. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 89-95. doi: 10.13205/j.hjgc.202111011

REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE

doi: 10.13205/j.hjgc.202111011
  • Received Date: 2020-08-21
    Available Online: 2022-01-26
  • In the present work, a bipolar membrane electrodialysis(BMED) was used to remove and recover hexavalent chromium[Cr(Ⅵ)] in form of H2CrO4 from the simulated wastewater. The effects of electrolyte concentration in wastewater, current density, and initial Cr(Ⅵ) concentration on removal of Cr(Ⅵ) were investigated. The experimental results showed that the electrolyte concentration of 1 g/L and current density of 2 mA/cm2 were the optimal experimental conditions when initial Cr(Ⅵ) concentration was 500 mg/L, and the removal rate was 97.6%. A higher current efficiency (CE) and a lower specific energy consumption (SEC) were obtained when two and three wastewater compartment were equipped in the BMED system and Cr(Ⅵ) removal rates in all wastewater compartments were higher than 97.0%. With the increase in the number of equipped wastewater compartment from one to two and three in the BMED system, CE increased from 31.5% to 125.8% and 284.4%, SEC decreased from 19.49×10-3 to 7.76×10-3, 4.17×10-3 kW·h/g Cr(Ⅵ), respectively. Experimental results showed that the BMED was an effective method for the removal and recovery of Cr(Ⅵ) from aqueous solution.
  • [1]
    LONG B B, YE J E, YE Z, et al. Cr(Ⅵ) removal by Penicillium oxalicum SL2:reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere, 2020, 253:126731.
    [2]
    ZHANG L, NIU W Y, SUN J, et al. Efficient removal of Cr(Ⅵ) from water by the uniform fiber ball loaded with polypyrrole:static adsorption, dynamic adsorption and mechanism studies[J]. Chemosphere, 2020, 248:126102.
    [3]
    ZHAO Z Y, AN H, LIN J, et al. Progress on the photocatalytic reduction removal of chromium contamination[J]. Chemical Record, 2019, 19(5):873-882.
    [4]
    ZHENG Y R, LIU S G, DAI C M, et al. Study on the influence mechanism of underground mineral element Fe(Ⅱ) on Cr(Ⅵ) transformation under subsurface and groundwater interaction zones[J]. Environmental Sciences Europe, 2020, 32(1):62.
    [5]
    PARANI S, OLUWAFEMI O S. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (Ⅲ) ions in the midst of interfering ions[J]. Nanotechnology, 2020, 31(39):395501.
    [6]
    TABATABAEI S, RAD B F, BAGHDADI M. Semicontinuous enhanced electroreduction of Cr(Ⅵ) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption[J]. Chemosphere, 2020, 251:126309.
    [7]
    XIA S P, SONG Z L, JEYAKUMAR P, et al. A critical review on bioremediation technologies for Cr(Ⅵ)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(12):1027-1078.
    [8]
    张立剑, 周睿. 活性炭材料对Cr(Ⅵ)的吸附研究[J]. 水处理技术, 2018, 44(8):49-52.
    [9]
    石林, 段睿, 杨翠英, 等. 常温还原铁氧体法处理含铬废水[J]. 环境工程学报, 2015, 9(8):3883-3888.
    [10]
    梅丽娟, 殷仕学, 朴哲, 等. 一种耐Cr(Ⅵ)微生物筛选新方法[J]. 环境科学与技术, 2019, 42(5):41-45.
    [11]
    ZHENG Y Q, CHENG B, YOU W, et al. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(Ⅵ) ions[J]. Journal of Hazardous Materials, 2019, 369:214-225.
    [12]
    冯西平, 冯婷希. 亚硫酸氢钠处理电镀废水中铬的实验研究[J]. 电镀与环保, 2018, 38(1):64-67.
    [13]
    MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902.
    [14]
    CAI Y Y, HAN Z P, LIN X C, et al. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis system with magnesium anode[J]. Science of the Total Environment, 2020, 726:138221.
    [15]
    陈日耀. 纳米SiO2改性海藻酸钠/壳聚糖双极膜的制备与表征[J]. 高校化学工程学报, 2012, 26(1):160-164.
    [16]
    LIU Y X, KE X, ZHU H Q, et al. Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system[J]. Chemical Engineering Journal, 2020, 382:122956.
    [17]
    HERRERO-GONZALEZ M, DIAZ-GURIDI P, DOMINGUEZ-RAMOS A, et al. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2020, 242:116785.
    [18]
    İPEKÇI D, KABAY N, BUNANI S, et al. Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM)[J]. Desalination, 2020, 479:114313.
    [19]
    KRAVTSOV V, KULIKOVA I, MIKHAYLIN S, et al. Alkalinization of acid whey by means of electrodialysis with bipolar membranes and analysis of induced membrane fouling[J]. Journal of Food Engineering, 2020, 277:109891.
  • Relative Articles

    [1]WANG Ziting, ZOU Jiawei, ZHOU Jiti, JIN Ruofei. PREPARATION OF GOETHITE-MODIFIED BIOCHAR AND ITS ADSORPTION CAPACITY ON Cr(Ⅵ)[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 98-104. doi: 10.13205/j.hjgc.202211014
    [2]ZHENG Ying, LUO Hanlu, LI Bolin, ZHOU Xiaoyu, MO Wenting, ZHOU Qinwen, GAO Yinglong, JIANG Yongyi, LIU Jianwen. KINETIC MECHANISM OF LEACHING LITHIUM COBALT OXIDES USING TARTARIC ACID[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 88-92,99. doi: 10.13205/j.hjgc.202202014
    [3]JIN Xiao-dan, TIAN Yong-qiang, WU Hao, CHEN He-xiao, WANG Xing-run, CHENG Jin-ping. CHARACTERISTICS OF CHROMIUM POLLUTION AND ITS INFLUENCING FACTORS IN LEATHER INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 206-211,219. doi: 10.13205/j.hjgc.202112031
    [4]LENG Guo-qin, TAO Tian-yi, YANG Yi-fan, CHEN Bo-li, SUN Zhi, HUANG Zhao-hui. INDIUM RECOVERY PROCESSES DEVELOPMENT FROM VARIOUS In-CONTAINING WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 142-149. doi: 10.13205/j.hjgc.202105020
    [5]ZHANG Zong-bin, YUE Zheng-bo, WU Jing-hang, WANG Jin. CHARACTERISTICS ANALYSIS OF AN ELECTRICITY-PRODUCING STRAIN SHEWANELLA XMS-1 FROM MARINE SEDIMENTS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 33-39. doi: 10.13205/j.hjgc.202101004
    [6]SHI Xiao-lin, WANG Da-xin, LOU Shu-yi, CHEN Fu-qiang, LI Yu-you. APPLICATION OF ELECTRODIALYSIS TECHNOLOGY IN ZERO LIQUID DISCHARGE TREATMENT FOR WASTERWATER OF A CEMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 179-184. doi: 10.13205/j.hjgc.202107025
    [7]YANG Liu-yang, WANG Lei, CUI Chang-hao, LIU Mei-jia, LI Li, YAN Da-hai. TRANSFORMATION OF Cr CHEMICAL FORMS IN CEMENT KILNS CO-PROCESSING Cr CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 185-190. doi: 10.13205/j.hjgc.202110026
    [8]LI Da-hai, ZHANG Xing-xing, CHEN Gan, XU Shi-quan, YANG Xue-min, GAO Yi. APPLICATION OF PRETREATMENT+MULTISTAGE MEMBRANE CONCENTRATION+EVAPORATIVE CRYSTALLIZATION+MEMBRANE ELECTROLYSIS COMBINED PROCESS IN A ZERO DISCHARGE PROJECT OF PAPERMAKING WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 185-191. doi: 10.13205/j.hjgc.202107026
    [9]TENG Yu-ting, ZHANG Ya-ping, WANG Ling, WU Peng. RECOVERY OF TITANIUM, VANADIUM AND TUNGSTEN FROM WASTE SCR DENITRATION CATALYST BY DRY-WET PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 163-167,174. doi: 10.13205/j.hjgc.202011027
    [10]CAO Da-qi, SUN Xiu-zhen, FANG Xiao-min, JIN Jing-yi, YANG Xiao-xuan, HAO Xiao-di. RECOVERY OF EXTRACELLULAR POLYMERIC SUBSTANCE: IMPACT FACTORS IN FORWARD OSMOSIS SEPARATION OF SODIUM ALGINATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 71-75. doi: 10.13205/j.hjgc.202008012
    [11]HUANG Kai-you, SHEN Ying-jie, WANG Xiao-yan, WANG Xing-run, YUAN Wen-yi, ZHANG Cheng-long, BAI Jian-feng, WANG Jing-wei. REVIEW ON PREPARATION OF BIO-CARBON LOADED NANO ZERO-VALENT IRON AND ITS APPLICATION IN REMEDIATING Cr(Ⅵ)-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 203-210,195. doi: 10.13205/j.hjgc.202011033
    [12]FANG Wei, JIANG Xian-ying, LI Jing-shi, LUO Qi-jin. ADSORPTION CAPABILITY OF GRAPHENE/SiO2-POLYPYRROLE COMPOSITES FOR Cr(Ⅵ) IN WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 53-59. doi: 10.13205/j.hjgc.202011009
    [13]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [15]Bu Fan Xie Li Lu Bin Cao Rong Zhou Qi, . STUDY ON PHOSPHOROUS RECOVERY BY STRUVITE CRYSTALLIZATION IN EFFLUENT FROM AN ANAEROBIC MEMBRANE BIOREACTOR TREATING SWINE MANURE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 1-4. doi: 10.13205/j.hjgc.201508001
  • Cited by

    Periodical cited type(4)

    1. 付欣,蔡平雄,潘远凤. 聚乙烯亚胺改性蔗渣纤维素/蒙脱土复合球的制备及对Cd(Ⅱ)的吸附. 精细化工. 2023(11): 2535-2543 .
    2. 杨雪,何灿,孙剑宇,刘捷. 双极膜应用现状与发展. 能源科技. 2022(02): 54-59 .
    3. 徐劲松,林敏,陈晓平,马吉亮,耿鹏飞,鲍学兵,刘道银,梁财. 不锈钢酸洗废混酸流化床焙烧再生特性的实验研究. 化工学报. 2022(05): 2242-2250 .
    4. 杨雪,何灿,刘捷. 双极膜改性研究进展. 现代化工. 2021(10): 38-41+46 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 5.5 %FULLTEXT: 5.5 %META: 92.1 %META: 92.1 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 18.2 %其他: 18.2 %China: 0.6 %China: 0.6 %Hamilton: 0.6 %Hamilton: 0.6 %[]: 0.6 %[]: 0.6 %上海: 0.6 %上海: 0.6 %东莞: 0.6 %东莞: 0.6 %临汾: 0.6 %临汾: 0.6 %丽水: 0.6 %丽水: 0.6 %乌鲁木齐: 0.6 %乌鲁木齐: 0.6 %儋州: 1.2 %儋州: 1.2 %六安: 0.6 %六安: 0.6 %北京: 1.8 %北京: 1.8 %南京: 0.6 %南京: 0.6 %厦门: 0.6 %厦门: 0.6 %台州: 1.2 %台州: 1.2 %嘉兴: 0.6 %嘉兴: 0.6 %大连: 0.6 %大连: 0.6 %天津: 0.6 %天津: 0.6 %密蘇里城: 0.6 %密蘇里城: 0.6 %常德: 0.6 %常德: 0.6 %张家口: 5.5 %张家口: 5.5 %成都: 1.2 %成都: 1.2 %扬州: 1.2 %扬州: 1.2 %昆明: 1.8 %昆明: 1.8 %晋城: 1.2 %晋城: 1.2 %朝阳: 0.6 %朝阳: 0.6 %杭州: 1.8 %杭州: 1.8 %武汉: 3.0 %武汉: 3.0 %沈阳: 1.8 %沈阳: 1.8 %泰安: 0.6 %泰安: 0.6 %济源: 1.2 %济源: 1.2 %湖州: 1.8 %湖州: 1.8 %湘潭: 0.6 %湘潭: 0.6 %漯河: 1.2 %漯河: 1.2 %石家庄: 0.6 %石家庄: 0.6 %福州: 0.6 %福州: 0.6 %肇庆: 0.6 %肇庆: 0.6 %芒廷维尤: 23.0 %芒廷维尤: 23.0 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.6 %苏州: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 4.8 %西宁: 4.8 %西安: 0.6 %西安: 0.6 %贵阳: 0.6 %贵阳: 0.6 %运城: 6.1 %运城: 6.1 %遵义: 0.6 %遵义: 0.6 %邯郸: 1.2 %邯郸: 1.2 %郑州: 1.8 %郑州: 1.8 %长沙: 0.6 %长沙: 0.6 %长治: 0.6 %长治: 0.6 %青岛: 0.6 %青岛: 0.6 %其他ChinaHamilton[]上海东莞临汾丽水乌鲁木齐儋州六安北京南京厦门台州嘉兴大连天津密蘇里城常德张家口成都扬州昆明晋城朝阳杭州武汉沈阳泰安济源湖州湘潭漯河石家庄福州肇庆芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (151) PDF downloads(5) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return