Citation: | DAI Li-ping, ZHU Han-quan, KE Xiong, CHEN Ri-yao, LIU Yao-xing. REMOVAL OF HEXAVALENT CHROMIUM FROM AQUEOUS SOLUTION USING BIPOLAR MEMBRANE ELECTRODIALYSIS TECHNIQUE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 89-95. doi: 10.13205/j.hjgc.202111011 |
[1] |
LONG B B, YE J E, YE Z, et al. Cr(Ⅵ) removal by Penicillium oxalicum SL2:reduction with acidic metabolites and form transformation in the mycelium[J]. Chemosphere, 2020, 253:126731.
|
[2] |
ZHANG L, NIU W Y, SUN J, et al. Efficient removal of Cr(Ⅵ) from water by the uniform fiber ball loaded with polypyrrole:static adsorption, dynamic adsorption and mechanism studies[J]. Chemosphere, 2020, 248:126102.
|
[3] |
ZHAO Z Y, AN H, LIN J, et al. Progress on the photocatalytic reduction removal of chromium contamination[J]. Chemical Record, 2019, 19(5):873-882.
|
[4] |
ZHENG Y R, LIU S G, DAI C M, et al. Study on the influence mechanism of underground mineral element Fe(Ⅱ) on Cr(Ⅵ) transformation under subsurface and groundwater interaction zones[J]. Environmental Sciences Europe, 2020, 32(1):62.
|
[5] |
PARANI S, OLUWAFEMI O S. Selective and sensitive fluorescent nanoprobe based on AgInS2-ZnS quantum dots for the rapid detection of Cr (Ⅲ) ions in the midst of interfering ions[J]. Nanotechnology, 2020, 31(39):395501.
|
[6] |
TABATABAEI S, RAD B F, BAGHDADI M. Semicontinuous enhanced electroreduction of Cr(Ⅵ) in wastewater by cathode constructed of copper rods coated with palladium nanoparticles followed by adsorption[J]. Chemosphere, 2020, 251:126309.
|
[7] |
XIA S P, SONG Z L, JEYAKUMAR P, et al. A critical review on bioremediation technologies for Cr(Ⅵ)-contaminated soils and wastewater[J]. Critical Reviews in Environmental Science and Technology, 2019, 49(12):1027-1078.
|
[8] |
张立剑, 周睿. 活性炭材料对Cr(Ⅵ)的吸附研究[J]. 水处理技术, 2018, 44(8):49-52.
|
[9] |
石林, 段睿, 杨翠英, 等. 常温还原铁氧体法处理含铬废水[J]. 环境工程学报, 2015, 9(8):3883-3888.
|
[10] |
梅丽娟, 殷仕学, 朴哲, 等. 一种耐Cr(Ⅵ)微生物筛选新方法[J]. 环境科学与技术, 2019, 42(5):41-45.
|
[11] |
ZHENG Y Q, CHENG B, YOU W, et al. 3D hierarchical graphene oxide-NiFe LDH composite with enhanced adsorption affinity to Congo red, methyl orange and Cr(Ⅵ) ions[J]. Journal of Hazardous Materials, 2019, 369:214-225.
|
[12] |
冯西平, 冯婷希. 亚硫酸氢钠处理电镀废水中铬的实验研究[J]. 电镀与环保, 2018, 38(1):64-67.
|
[13] |
MOHAMED A, YU L, FANG Y, et al. Iron mineral-humic acid complex enhanced Cr(Ⅵ) reduction by Shewanella oneidensis MR-1[J]. Chemosphere, 2020, 247:125902.
|
[14] |
CAI Y Y, HAN Z P, LIN X C, et al. Study on removal of phosphorus as struvite from synthetic wastewater using a pilot-scale electrodialysis system with magnesium anode[J]. Science of the Total Environment, 2020, 726:138221.
|
[15] |
陈日耀. 纳米SiO2改性海藻酸钠/壳聚糖双极膜的制备与表征[J]. 高校化学工程学报, 2012, 26(1):160-164.
|
[16] |
LIU Y X, KE X, ZHU H Q, et al. Treatment of raffinate generated via copper ore hydrometallurgical processing using a bipolar membrane electrodialysis system[J]. Chemical Engineering Journal, 2020, 382:122956.
|
[17] |
HERRERO-GONZALEZ M, DIAZ-GURIDI P, DOMINGUEZ-RAMOS A, et al. Highly concentrated HCl and NaOH from brines using electrodialysis with bipolar membranes[J]. Separation and Purification Technology, 2020, 242:116785.
|
[18] |
İPEKÇI D, KABAY N, BUNANI S, et al. Application of heterogeneous ion exchange membranes for simultaneous separation and recovery of lithium and boron from aqueous solution with bipolar membrane electrodialysis (EDBM)[J]. Desalination, 2020, 479:114313.
|
[19] |
KRAVTSOV V, KULIKOVA I, MIKHAYLIN S, et al. Alkalinization of acid whey by means of electrodialysis with bipolar membranes and analysis of induced membrane fouling[J]. Journal of Food Engineering, 2020, 277:109891.
|
[1] | XU Xiaohu, SHEN Yaoliang. EFFICIENCIES OF DIFFERENT MAGNESIUM SOURCES IN STRUVITE FORMATION FROM IRON PHOSPHATE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 108-115. doi: 10.13205/j.hjgc.202409010 |
[2] | LAN Rui, YANG Xiaofan, CUI Haoran, YAN Lingjian, LIU Xinyi, GAO Xiaozhong, SUN Dezhi, CHENG Xiang. RESEARCH PROGRESS ON VIVIANITE CRYSTALLIZATION-BASED PHOSPHORUS REMOVAL AND RECOVERY FROM WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 91-99. doi: 10.13205/j.hjgc.202409008 |
[3] | FAN Yu, HUA Yu, YANG Donghai, DAI Xiaohu. RESEARCH PROGRESS ON SEPARATION AND RECOVERY OF ALUMINUM COAGULANTS FROM WASTEWATER SLUDGE IN THE CONTEXT OF CIRCULAR ECONOMY[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 210-220. doi: 10.13205/j.hjgc.202309026 |
[4] | ZHU Jiaming, HE Yuecheng, LONG Dingbiao, HUANG Qian, XU Wenlai, PU Shihua, JIAN Yue. INVESTIGATION OF FACTORS INFLUENCING THE RECOVERY OF PHOSPHORUS FROM SWINE WASTEWATER BY HAP CRYSTALLIZATION BASED ON SPENT FOAM CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 1-7,17. doi: 10.13205/j.hjgc.202308001 |
[5] | FAN Meirong, ZHANG Shangyi, YANG Yanmei, YANG Jinzhong, YANG Yufei, XIE Zhen. THERMAL DECOMPOSITION LAW OF BDE-209 IN CEMENT KILN UNDER THERMAL CONDITION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 98-104,111. doi: 10.13205/j.hjgc.202210013 |
[6] | XU Jun, WEI Haijuan, WANG Zhiwei. ENHANCED PHOSPHORUS RECOVERY FROM WASTEWATER BY MEMBRANE FILTRATION COUPLED WITH ELECTROCHEMICAL TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 7-12. doi: 10.13205/j.hjgc.202203002 |
[7] | ZHANG Shao-kang, GONG Xiao-feng, LIN Yuan, WU Li, XIONG Jie-qian, WU Jing-lin. REMEDIATION OF Cd CONTAMINATED SOIL BY ARTIFICIAL STRUVITE COMBINED WITH RYEGRASS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 193-198. doi: 10.13205/j.hjgc.202109027 |
[8] | XIAO Cong-liang, GUO Yuan-tao, LIU Liang, XIN Jia-qi, ZHUO Meng-qiong, LIU Qiang, ZHUO Wen-guang, LI Kun. OPTIMIZATION OF PARAMETERS IN ADVANCED TREATMENT OF LIVESTOCK WASTEWATER BY ALGAL-BACTERIA IMMOBILIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 42-48,166. doi: 10.13205/j.hjgc.202106007 |
[9] | LIU Xue-yu, LIN Yu, WANG Fang-zhou, YAN Bing-fei, XIAO Shu-hu, WEI Dong-yang. STUDY ON PHOSPHORUS RECOVERY EFFICIENCY USING THREE CRYSTAL SEEDS AND THE PRODUCTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 81-85,139. doi: 10.13205/j.hjgc.202002011 |
[14] | Duan Lujuan Cao Jingguo Xiong Fa Yang Zongzheng, . EXPERIMENTAL STUDY OF CHICKEN MANURE FERMENTATION LIQUID TREATMENT BY STRUVITE PRECIPITATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 66-71?. |
[16] | Bu Fan Xie Li Lu Bin Cao Rong Zhou Qi, . STUDY ON PHOSPHOROUS RECOVERY BY STRUVITE CRYSTALLIZATION IN EFFLUENT FROM AN ANAEROBIC MEMBRANE BIOREACTOR TREATING SWINE MANURE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 1-4. doi: 10.13205/j.hjgc.201508001 |
1. | 赵记楠,刘思韵,单瑛琦,刘畅,田梦园,李柏林. 硫自养反硝化耦合厌氧氨氧化脱氮系统快速启动及微生物群落分析. 环境工程. 2024(06): 9-16 . ![]() | |
2. | 陈长东,薛晓飞,穆永杰,张建锋,孙尚勇,张丽丽,曹之淇. 主流程厌氧氨氧化耦合多种脱氮途径处理市政污水. 环境工程学报. 2023(04): 1084-1091 . ![]() | |
3. | 李聪,杜睿,彭永臻. 不同聚集形态短程反硝化耦合厌氧氨氧化系统脱氮性能与碳源利用特性. 环境工程. 2023(09): 1-9 . ![]() | |
4. | 钱建英. 前置和后置反硝化处理低C/N印花废水对比研究. 环境科技. 2023(05): 13-18 . ![]() |