Citation: | ZHANG Zhuo-ran, LIU Qing-hua, WANG Wei-gang, RONG Jing, CAO Rui-jie, LUO Wen-tao, LIU Chao, WANG Ya-yi. EFFECT OF PYROLYSIS TEMPERATURE ON THE PHYSICAL AND CHEMICAL CHARACTERISTICS OF BAMBOO-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 96-102,126. doi: 10.13205/j.hjgc.202111012 |
[1] |
LEHMANN J, JOSEPH S. Biochar for Environmental Management:Science, Technology and Implementation[M]. Taylor and Francis, 2015.
|
[2] |
MAHTAB A, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014, 99:19-33.
|
[3] |
刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应[J].应用生态学报,2009,20(4):977-982.
|
[4] |
张东升,江泽慧,任海青,等.竹炭微观构造形貌表征[J].竹子研究汇刊,2006(4):1-8.
|
[5] |
CORNELISSEN G,GUSTAFSSON,BUCHELI T D,et al.Extensive sorption of organic compounds to black carbon,coal,and kerogen in sediments and soils:mechanisms and consequences for distribution,bioaccumulation,and biodegradation[J].Environmental Science & Technology,2005,39(18):6881-6895.
|
[6] |
LIANG B,LEHMANN J,SOLOMON D,et al.Black carbon increase cation exchange capacity in soils[J].Soil Science Society of America Journal,2006,70(5):1719-1730.
|
[7] |
DONG X L, MA L Q, LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):909-915.
|
[8] |
XU X Y, HUANG H, ZHANG Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(Ⅵ) during its sorption[J]. Environmental Pollution, 2019, 244:423-430.
|
[9] |
KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8):339-344.
|
[10] |
QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(Ⅵ) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 215:739-745.
|
[11] |
OH S, SEO Y, RYU K. Reductive removal of 2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent iron-included biochar[J]. Bioresource Technology, 2016, 216:1014-1021.
|
[12] |
AHMED A, KURIAN J, RAGHAVAN V. Biochar influences on agricultural soils, crop production, and the environment:a review[J]. Environmental Reviews, 2016, 24(4):495-502.
|
[13] |
KONG L L, GAO Y Y, ZHOU Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343:276-284.
|
[14] |
VITHANAGE M, HERATH I, ALMAROAI Y A, et al. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil[J]. Environmental Geochemistry and Health, 2018, 40(1):565.
|
[15] |
Van der ZEE F R, CERVANTES F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants:a review[J]. Biotechnology Advances, 2009, 27(3):256-277.
|
[16] |
FRANCISCO J, CHACÓN, et al. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4):695-715.
|
[17] |
KLVPFEL LAURA, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611.
|
[18] |
CHEN S S, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4:5019.
|
[19] |
ANTAL M J,GRONLI M.The art,science,and technology of charcoal production[J].Ind Eng Chem Res,2003,42(8):1619-1640.
|
[20] |
LEHMANN J,JOSEPH S.Biochar for environmental management:science and technology[M].London:Earthscan,2009:1-29,107-157.
|
[21] |
LEE J W,KIDDER M,EVANS B R.Characterization of biochars produced from cornstovers for soil amendment[J].Environmental Science & Technology,2010,44(20):7970-7974.
|
[22] |
HOSSAIN M K,STREZOV V,CHAN K Y,et al.Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J].Journal of Environmental Management,2011,92(1):223-228.
|
[23] |
CAO X D,HARRIS W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J].Bioresource Technology,2010,101(14):5222-5228.
|
[24] |
SARAN S,ELISA L C,EVELYN K,et al.Biochar,climate change and soil:a review to guide future research[R].CSIRO Land and WaterScience Report,2009:5-6.
|
[25] |
KUPPUSAMY S, YI L, EDMOND S. Electrochemical behavior of biochar and its effects on microbial nitrate reduction:role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395:125077.
|
[26] |
XU J J, WU X H, ZHU N W et al. Anammox process dosed with biochars for enhanced nitrogen removal:role of surface functional groups[J]. Science of the Total Environment, 2020, 748:141367.
|
[27] |
LIU D L, LI J, ZHANG S S, et al. Leaf spot disease of Orychophragmus violaceus caused by Alternaria tenuissima in China[J]. Plant Disease, 2021.
|
[28] |
CHEN Y, HALLER C, LIU W, et al. GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells:the critical role of nitrogen vacancies at the GaN surface[J]. Applied Physics Letters, 2021, 118(11):.
|
[29] |
MUTHANNA J. Ahmed and SAMAR K. Theydan. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics[J]. Powder Technology, 2012, 229:237-245.
|
[30] |
CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
|
[31] |
NOVAK J M, CANTRELL K B, WATTS D W, et al. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks[J]. Journal of Soils and Sediments, 2014, 14(2):330-343.
|
[32] |
LI N, RAO F, HE L L, et al. Evaluation of biochar properties exposing to solar radiation:a promotion on surface activities[J]. Chemical Engineering Journal, 2020, 384:123353.
|
[33] |
WANG G J, LI Q, DZAKPASU M, et al. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge[J]. Waste Management, 2018, 80:73-80.
|
[34] |
PFAFFENEDER-KMEN M, CASAS I F, NAGHILOU A, et al. A multivariate curve resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide[J]. Electrochimica Acta, 2017, 255:160-167.
|
[35] |
WU Z S, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar:a molecular and electrochemical mechanism[J]. Bioresource Technology, 2019, 275:297-306.
|
[1] | WANG Tao, LING Xiaolong, DONG Yuanyuan, BU Jiuhe, HU Xiaohui. EFFECT OF TYPICAL FLOCCULANTS ON FORMATION AND ADSORPTION CHARACTERISTICS OF SLUDGE-DERIVED HYDROCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 166-173. doi: 10.13205/j.hjgc.202412020 |
[2] | XING Yutong, ZHANG Yiwei, LU Ping. COMBUSTION AND PYROLYSIS CHARACTERISTICS OF HYDROCHARS BY CO-HYDROTHERMAL CARBONIZATION OF VISCOSE FIBER AND POPLAR WOOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 137-144,168. doi: 10.13205/j.hjgc.202308017 |
[3] | LIAO Xiaoshu, ZHU Chengyu, CHOU Yue, ZHONG Min, ZHOU Bingling, ZHANG Qian. PERSULFATE ACTIVATION VIA NANOSCALE ZERO-VALENT IRON BASED BIOCHAR FOR OXYTETRACYCLINE DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 118-124,95. doi: 10.13205/j.hjgc.202208016 |
[4] | YIN Zhitong, LV Hongbing, ZHANG Dongming, XU Jiao, HUANG Qunxing, ZHONG Yiliu, HUANG Pingan, PAN Yuhan. COMBUSTION TEMPERATURE AND EMISSION CHARACTERISTICS OF FLUE GAS POLLUTANTS OF WASTE TIRES PYROLYSIS OIL RICH IN AROMATICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 105-111. doi: 10.13205/j.hjgc.202210014 |
[5] | WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025 |
[6] | HU Hua-jun, HUANG Ya-ji, CAO Jian-hua, LIU Ling-qin, QI Er-bing, DING Shou-yi, FAN Cong-hui. PYROLYSIS AND CARBON PRODUCTION OF RICE HUSK IN FLUIDIZED BED UNDER FLUE GAS WITH DIFFERENT CO2/O2 ATMOSPHERES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 117-122. doi: 10.13205/j.hjgc.202101018 |
[7] | HE Zhi-qiao, ZHANG Kang, LU Peng, GUAN Jian, LV Hong-kun, YING Guang-yao, LIU Ying-zu. COMBUSTION BEHAVIOR OF PYROLYSIS CHAR PRODUCED FROM MSW COMPONENTS BASED ON ACTIVITY AND POLLUTANT EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 172-178. doi: 10.13205/j.hjgc.202112026 |
[8] | ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023 |
[9] | WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013 |
[10] | ZHANG Qing-yi, LIU Chang-qing, WU Chun-shan, ZHENG Yu-yi, ZHUO Gui-hua. EFFECT OF PYROLYSIS TIME ON PAHS CONTENT AND TOXICITY IN SLUDGE-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 129-135. doi: 10.13205/j.hjgc.202110018 |
[11] | CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020 |
[12] | WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039 |