Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YIN Yalun, HOU Jingming, LI Xinyi, LUAN Guangxue, GAO Xujun, WANG Tian, SHEN Jian, QIAO Mengxi. APPLICATION OF GAST-SWMM COUPLED NUMERICAL MODEL IN LARGE-SCALE URBAN INUNDATION RISK ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 82-90. doi: 10.13205/j.hjgc.202404010
Citation: ZHANG Zhuo-ran, LIU Qing-hua, WANG Wei-gang, RONG Jing, CAO Rui-jie, LUO Wen-tao, LIU Chao, WANG Ya-yi. EFFECT OF PYROLYSIS TEMPERATURE ON THE PHYSICAL AND CHEMICAL CHARACTERISTICS OF BAMBOO-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 96-102,126. doi: 10.13205/j.hjgc.202111012

EFFECT OF PYROLYSIS TEMPERATURE ON THE PHYSICAL AND CHEMICAL CHARACTERISTICS OF BAMBOO-BASED BIOCHAR

doi: 10.13205/j.hjgc.202111012
  • Received Date: 2021-08-04
    Available Online: 2022-01-26
  • As a new environmental functional material, biochar showed application prospects in environmental pollution remediation, soil improvement, greenhouse gas emission reduction, and enhanced biological nitrogen removal from wastewater. Biochars were prepared from bamboo powder at different pyrolysis temperatures, and their electron exchange capacity, surface functional groups, and elemental composition were characterized to explore the effect of pyrolysis temperatures on the physicochemical characteristics of bamboo-based biochar. The results showed that while the pyrolysis temperature increased from 300℃ to 700℃, the electron donating capacity (EDC) of biochars generally increased first and then decreased. The highest EDC was obtained in the biochars prepared at 300℃ and 400℃ with the value of 0.33 e-/g Biochar and 0.35 e-/g Biochar, respectively, had higher potential in improving biological nitrogen removal; and the lowest EDC was obtained in the biochars prepared at 600℃ with the value of 0.07 e-/g Biochar. Accordingly, the average oxidation degree Cox calculated from the elemental content was corresponding to the results of EDC. With the increase of pyrolysis temperature, the Cox of biochars changed from negative to positive. When the pyrolysis temperature was 300℃ or 400℃, the Cox of the biochars was negative, indicating that the biochars was more reductive and less oxidizable than those prepared at 500~700℃, i.e., higher electron donating capacity (EDC) and lower electron accepting capacity (EAC). In addition, Fourier transform infrared spectroscopy showed that the hydroxyl content of the biochars was highest at 300℃ and 400℃, which was consistent with their highest EDC.
  • [1]
    LEHMANN J, JOSEPH S. Biochar for Environmental Management:Science, Technology and Implementation[M]. Taylor and Francis, 2015.
    [2]
    MAHTAB A, et al. Biochar as a sorbent for contaminant management in soil and water:a review[J]. Chemosphere, 2014, 99:19-33.
    [3]
    刘玉学,刘微,吴伟祥,等.土壤生物质炭环境行为与环境效应[J].应用生态学报,2009,20(4):977-982.
    [4]
    张东升,江泽慧,任海青,等.竹炭微观构造形貌表征[J].竹子研究汇刊,2006(4):1-8.
    [5]
    CORNELISSEN G,GUSTAFSSON,BUCHELI T D,et al.Extensive sorption of organic compounds to black carbon,coal,and kerogen in sediments and soils:mechanisms and consequences for distribution,bioaccumulation,and biodegradation[J].Environmental Science & Technology,2005,39(18):6881-6895.
    [6]
    LIANG B,LEHMANN J,SOLOMON D,et al.Black carbon increase cation exchange capacity in soils[J].Soil Science Society of America Journal,2006,70(5):1719-1730.
    [7]
    DONG X L, MA L Q, LI Y C. Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing[J]. Journal of Hazardous Materials, 2011, 190(1/2/3):909-915.
    [8]
    XU X Y, HUANG H, ZHANG Y, et al. Biochar as both electron donor and electron shuttle for the reduction transformation of Cr(Ⅵ) during its sorption[J]. Environmental Pollution, 2019, 244:423-430.
    [9]
    KAPPLER A, WUESTNER M L, RUECKER A, et al. Biochar as an electron shuttle between bacteria and Fe(Ⅲ) minerals[J]. Environmental Science & Technology Letters, 2014, 1(8):339-344.
    [10]
    QIAN L B, SHANG X, ZHANG B, et al. Enhanced removal of Cr(Ⅵ) by silicon rich biochar-supported nanoscale zero-valent iron[J]. Chemosphere, 2019, 215:739-745.
    [11]
    OH S, SEO Y, RYU K. Reductive removal of 2,4-dinitrotoluene and 2,4-dichlorophenol with zero-valent iron-included biochar[J]. Bioresource Technology, 2016, 216:1014-1021.
    [12]
    AHMED A, KURIAN J, RAGHAVAN V. Biochar influences on agricultural soils, crop production, and the environment:a review[J]. Environmental Reviews, 2016, 24(4):495-502.
    [13]
    KONG L L, GAO Y Y, ZHOU Q X, et al. Biochar accelerates PAHs biodegradation in petroleum-polluted soil by biostimulation strategy[J]. Journal of Hazardous Materials, 2018, 343:276-284.
    [14]
    VITHANAGE M, HERATH I, ALMAROAI Y A, et al. Effects of carbon nanotube and biochar on bioavailability of Pb, Cu and Sb in multi-metal contaminated soil[J]. Environmental Geochemistry and Health, 2018, 40(1):565.
    [15]
    Van der ZEE F R, CERVANTES F J. Impact and application of electron shuttles on the redox (bio)transformation of contaminants:a review[J]. Biotechnology Advances, 2009, 27(3):256-277.
    [16]
    FRANCISCO J, CHACÓN, et al. Understanding, measuring and tuning the electrochemical properties of biochar for environmental applications[J]. Reviews in Environmental Science and Bio/Technology, 2017, 16(4):695-715.
    [17]
    KLVPFEL LAURA, et al. Redox properties of plant biomass-derived black carbon (biochar)[J]. Environmental Science & Technology, 2014, 48(10):5601-5611.
    [18]
    CHEN S S, et al. Promoting interspecies electron transfer with biochar[J]. Scientific Reports, 2014, 4:5019.
    [19]
    ANTAL M J,GRONLI M.The art,science,and technology of charcoal production[J].Ind Eng Chem Res,2003,42(8):1619-1640.
    [20]
    LEHMANN J,JOSEPH S.Biochar for environmental management:science and technology[M].London:Earthscan,2009:1-29,107-157.
    [21]
    LEE J W,KIDDER M,EVANS B R.Characterization of biochars produced from cornstovers for soil amendment[J].Environmental Science & Technology,2010,44(20):7970-7974.
    [22]
    HOSSAIN M K,STREZOV V,CHAN K Y,et al.Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J].Journal of Environmental Management,2011,92(1):223-228.
    [23]
    CAO X D,HARRIS W.Properties of dairy-manure-derived biochar pertinent to its potential use in remediation[J].Bioresource Technology,2010,101(14):5222-5228.
    [24]
    SARAN S,ELISA L C,EVELYN K,et al.Biochar,climate change and soil:a review to guide future research[R].CSIRO Land and WaterScience Report,2009:5-6.
    [25]
    KUPPUSAMY S, YI L, EDMOND S. Electrochemical behavior of biochar and its effects on microbial nitrate reduction:role of extracellular polymeric substances in extracellular electron transfer[J]. Chemical Engineering Journal, 2020, 395:125077.
    [26]
    XU J J, WU X H, ZHU N W et al. Anammox process dosed with biochars for enhanced nitrogen removal:role of surface functional groups[J]. Science of the Total Environment, 2020, 748:141367.
    [27]
    LIU D L, LI J, ZHANG S S, et al. Leaf spot disease of Orychophragmus violaceus caused by Alternaria tenuissima in China[J]. Plant Disease, 2021.
    [28]
    CHEN Y, HALLER C, LIU W, et al. GaN buffer growth temperature and efficiency of InGaN/GaN quantum wells:the critical role of nitrogen vacancies at the GaN surface[J]. Applied Physics Letters, 2021, 118(11):.
    [29]
    MUTHANNA J. Ahmed and SAMAR K. Theydan. Physical and chemical characteristics of activated carbon prepared by pyrolysis of chemically treated date stones and its ability to adsorb organics[J]. Powder Technology, 2012, 229:237-245.
    [30]
    CHUN Y, SHENG G Y, CHIOU C T, et al. Compositions and sorptive properties of crop residue-derived chars[J]. Environmental Science & Technology, 2004, 38(17):4649-4655.
    [31]
    NOVAK J M, CANTRELL K B, WATTS D W, et al. Designing relevant biochars as soil amendments using lignocellulosic-based and manure-based feedstocks[J]. Journal of Soils and Sediments, 2014, 14(2):330-343.
    [32]
    LI N, RAO F, HE L L, et al. Evaluation of biochar properties exposing to solar radiation:a promotion on surface activities[J]. Chemical Engineering Journal, 2020, 384:123353.
    [33]
    WANG G J, LI Q, DZAKPASU M, et al. Impacts of different biochar types on hydrogen production promotion during fermentative co-digestion of food wastes and dewatered sewage sludge[J]. Waste Management, 2018, 80:73-80.
    [34]
    PFAFFENEDER-KMEN M, CASAS I F, NAGHILOU A, et al. A multivariate curve resolution evaluation of an in-situ ATR-FTIR spectroscopy investigation of the electrochemical reduction of graphene oxide[J]. Electrochimica Acta, 2017, 255:160-167.
    [35]
    WU Z S, XU F, YANG C, et al. Highly efficient nitrate removal in a heterotrophic denitrification system amended with redox-active biochar:a molecular and electrochemical mechanism[J]. Bioresource Technology, 2019, 275:297-306.
  • Relative Articles

    [1]WANG Tao, LING Xiaolong, DONG Yuanyuan, BU Jiuhe, HU Xiaohui. EFFECT OF TYPICAL FLOCCULANTS ON FORMATION AND ADSORPTION CHARACTERISTICS OF SLUDGE-DERIVED HYDROCHAR[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 166-173. doi: 10.13205/j.hjgc.202412020
    [2]XING Yutong, ZHANG Yiwei, LU Ping. COMBUSTION AND PYROLYSIS CHARACTERISTICS OF HYDROCHARS BY CO-HYDROTHERMAL CARBONIZATION OF VISCOSE FIBER AND POPLAR WOOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 137-144,168. doi: 10.13205/j.hjgc.202308017
    [3]LIAO Xiaoshu, ZHU Chengyu, CHOU Yue, ZHONG Min, ZHOU Bingling, ZHANG Qian. PERSULFATE ACTIVATION VIA NANOSCALE ZERO-VALENT IRON BASED BIOCHAR FOR OXYTETRACYCLINE DEGRADATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 118-124,95. doi: 10.13205/j.hjgc.202208016
    [4]YIN Zhitong, LV Hongbing, ZHANG Dongming, XU Jiao, HUANG Qunxing, ZHONG Yiliu, HUANG Pingan, PAN Yuhan. COMBUSTION TEMPERATURE AND EMISSION CHARACTERISTICS OF FLUE GAS POLLUTANTS OF WASTE TIRES PYROLYSIS OIL RICH IN AROMATICS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 105-111. doi: 10.13205/j.hjgc.202210014
    [5]WANG Zhi-pu, REZEYE Rehemitu-li, ZHANG Da-wang, LIU Dan, ZHAO Qing-ying, SHU Xin-qian. EFFECT AND POSSIBLE MECHANISM OF IMMOBILIZATION OF CHROMIUM IN THE SOIL AMENDED BY BIOCHAR DERIVED FROM SEWAGE SLUDGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 178-183. doi: 10.13205/j.hjgc.202105025
    [6]HU Hua-jun, HUANG Ya-ji, CAO Jian-hua, LIU Ling-qin, QI Er-bing, DING Shou-yi, FAN Cong-hui. PYROLYSIS AND CARBON PRODUCTION OF RICE HUSK IN FLUIDIZED BED UNDER FLUE GAS WITH DIFFERENT CO2/O2 ATMOSPHERES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 117-122. doi: 10.13205/j.hjgc.202101018
    [7]HE Zhi-qiao, ZHANG Kang, LU Peng, GUAN Jian, LV Hong-kun, YING Guang-yao, LIU Ying-zu. COMBUSTION BEHAVIOR OF PYROLYSIS CHAR PRODUCED FROM MSW COMPONENTS BASED ON ACTIVITY AND POLLUTANT EMISSION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 172-178. doi: 10.13205/j.hjgc.202112026
    [8]ZHANG Ze, ZHAO Hong-jun, MENG Jie, HONG Chen, LI Yi-fei. RESEARCH PROGRESS OF BIOMASS PYROLYSIS AND BIO OIL UPGRADING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 161-171. doi: 10.13205/j.hjgc.202103023
    [9]WU Qin-yue, LIU He, ZHENG Wei, LIU Hong-bo, ZHENG Zhi-yong, ZHANG Yan, ZHANG Cui-cui. PREPARATION OF BIOCHAR BY PYROLYSIS OF PHARMACEUTICAL SLUDGE AND ITS ADSORPTION PERFORMANCE IN TREATING PHARMACEUTICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 103-109. doi: 10.13205/j.hjgc.202111013
    [10]ZHANG Qing-yi, LIU Chang-qing, WU Chun-shan, ZHENG Yu-yi, ZHUO Gui-hua. EFFECT OF PYROLYSIS TIME ON PAHS CONTENT AND TOXICITY IN SLUDGE-BASED BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 129-135. doi: 10.13205/j.hjgc.202110018
    [11]CHEN Lin, PING Wei, YAN Bin, WU Yan, FU Chuan, HUANG Lian-qi, LIU Lu, YIN Mao-yun. ADSORPTION CHARACTERISTICS OF Cr(Ⅵ) BY SLUDGE BIOCHAR UNDER DIFFERENT PYROLYSIS TEMPERATURES[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 119-124. doi: 10.13205/j.hjgc.202008020
    [12]WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039
  • Cited by

    Periodical cited type(6)

    1. 陈恒,黄敏,刘锋,李红芳,王彪懿. 绿狐尾藻基混合填料对生物滤池的脱氮性能及温室气体排放影响. 环境污染与防治. 2024(09): 1258-1264+1279 .
    2. 罗莹莹,吴钦鸿,华碧成,林嘉杏,麦思晓,吴雨桃. 生物炭材料对重金属的固定机制综述. 广州化工. 2024(20): 5-7 .
    3. Yizu PAN,Sihai ZHANG. Effects of Bamboo Charcoal-based Biochar on Soil Enzyme Activity and Microbial Community Structure. Agricultural Biotechnology. 2023(02): 84-86+90 .
    4. 韩融,王成杰,郭亚凯,葛强茹,程阳. 污泥-赤泥混合生物炭的制备及对环丙沙星的吸附研究. 安全与环境学报. 2023(06): 2069-2080 .
    5. 李经宽,曲孟青,张圆圆,杨凤玲,程芳琴. 生物炭CO_2吸附剂的制备和改性研究进展. 燃料化学学报(中英文). 2023(07): 882-895 .
    6. 刘青松,白国敏. 生物炭及其改性技术修复土壤重金属污染研究进展. 应用化工. 2022(11): 3285-3291+3299 .

    Other cited types(13)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 9.9 %FULLTEXT: 9.9 %META: 87.6 %META: 87.6 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.4 %其他: 20.4 %其他: 1.1 %其他: 1.1 %China: 0.4 %China: 0.4 %Seattle: 0.4 %Seattle: 0.4 %[]: 0.4 %[]: 0.4 %上海: 1.8 %上海: 1.8 %东莞: 4.0 %东莞: 4.0 %临汾: 0.4 %临汾: 0.4 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %佛山: 0.4 %佛山: 0.4 %兰州: 0.7 %兰州: 0.7 %北京: 4.7 %北京: 4.7 %十堰: 0.4 %十堰: 0.4 %南京: 1.5 %南京: 1.5 %南昌: 0.4 %南昌: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 0.4 %台州: 0.4 %合肥: 1.1 %合肥: 1.1 %大理: 0.7 %大理: 0.7 %天津: 3.3 %天津: 3.3 %宁波: 0.4 %宁波: 0.4 %宜宾: 0.4 %宜宾: 0.4 %常德: 0.4 %常德: 0.4 %广州: 0.4 %广州: 0.4 %张家口: 4.0 %张家口: 4.0 %成都: 0.7 %成都: 0.7 %扬州: 0.4 %扬州: 0.4 %新德里: 0.7 %新德里: 0.7 %无锡: 0.4 %无锡: 0.4 %昆明: 0.7 %昆明: 0.7 %晋中: 0.4 %晋中: 0.4 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.7 %朝阳: 0.7 %杭州: 2.9 %杭州: 2.9 %武汉: 2.2 %武汉: 2.2 %泉州: 0.4 %泉州: 0.4 %泰安: 0.4 %泰安: 0.4 %济源: 0.7 %济源: 0.7 %温州: 1.1 %温州: 1.1 %湖州: 0.4 %湖州: 0.4 %湘潭: 0.7 %湘潭: 0.7 %漯河: 0.7 %漯河: 0.7 %盐城: 0.4 %盐城: 0.4 %石家庄: 0.7 %石家庄: 0.7 %福州: 1.5 %福州: 1.5 %绵阳: 0.4 %绵阳: 0.4 %肇庆: 0.7 %肇庆: 0.7 %芒廷维尤: 19.0 %芒廷维尤: 19.0 %芝加哥: 1.5 %芝加哥: 1.5 %苏州: 0.4 %苏州: 0.4 %衡阳: 0.4 %衡阳: 0.4 %衢州: 0.4 %衢州: 0.4 %西安: 0.4 %西安: 0.4 %西雅图: 0.4 %西雅图: 0.4 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.6 %运城: 3.6 %连云港: 0.4 %连云港: 0.4 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.1 %郑州: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 0.7 %长春: 0.7 %长沙: 0.7 %长沙: 0.7 %长治: 0.4 %长治: 0.4 %雅安: 0.4 %雅安: 0.4 %青岛: 1.5 %青岛: 1.5 %黄石: 0.4 %黄石: 0.4 %其他其他ChinaSeattle[]上海东莞临汾乌鲁木齐佛山兰州北京十堰南京南昌厦门台州合肥大理天津宁波宜宾常德广州张家口成都扬州新德里无锡昆明晋中晋城朝阳杭州武汉泉州泰安济源温州湖州湘潭漯河盐城石家庄福州绵阳肇庆芒廷维尤芝加哥苏州衡阳衢州西安西雅图贵阳运城连云港遵义邯郸郑州重庆长春长沙长治雅安青岛黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (239) PDF downloads(7) Cited by(19)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return