Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
CHI Tong-tong, XU Ran-yun, LI Fei-fei, CHEN Lv-jun. CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 119-126. doi: 10.13205/j.hjgc.202111015
Citation: CHI Tong-tong, XU Ran-yun, LI Fei-fei, CHEN Lv-jun. CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 119-126. doi: 10.13205/j.hjgc.202111015

CATALYTIC OZONATION OF O-CHLOROPHENOL WITH MnOx/GAC SYNTHESIZED VIA ACID-THERMAL OXIDATION MODIFICATION METHOD

doi: 10.13205/j.hjgc.202111015
  • Received Date: 2021-07-02
    Available Online: 2022-01-26
  • MnOx/GAC catalyst was prepared by acid-thermal oxidation modification method loading manganese oxide on activated carbon, and the performance of its catalytic oxidation degrading o-chlorophenol was studied. Results showed that when the catalyst dosage was 0.1 g/L, the ozone concentration was 20 mg/L, the gas flow was 0.5 L/min, and the initial pH was 6, the TOC removal rate of o-chlorophenol reached 95% after 120 min, which was 55% higher than ozonation alone. The reaction rate and TOC removal rate was greater when increasing ozone concentration and gas flow within a certain range, since excessive ozone might lower the TOC removal rate. Effects of different ions on TOC removal rate was studied. No significant difference was noticed on TOC removal rate with the addition of 1 mmol/L NO3-, SO42-, Cl-, separately. TOC removal was decreased 10% with the addition of 1 mmol/L Br-. pH was an important factor affecting the oxidation capacity of the system. Under acidic conditions, TOC removal rate was much higher than in alkaline conditions, which might be related to the behavior of the catalyst surface functional group and the accumulation of inorganic carbon in the system. In addition, the relationship between the form of surface hydroxyl groups on the catalyst and pH was proposed, and the formation pathways of active species under different circumstances were speculated.
  • [1]
    El H K, KALNINA D, TURKS M, et al. Enhanced degradation of an azo dye by catalytic ozonation over Ni-containing layered double hydroxide nanocatalyst[J]. Separation and Purification Technology, 2019, 210:764-774.
    [2]
    龚小芝, 郦和生, 邱小云, 等. 催化臭氧氧化技术及其应用[J]. 化工环保, 2020, 40(4):353-357.
    [3]
    杨文玲, 王坦. 臭氧催化剂催化机理及其应用研究进展[J]. 应用化工, 2020, 49(11):2936-2940.
    [4]
    LU X H, ZHAI T, ZHANG X H, et al. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Advanced Materials, 2012, 24(7):938-944.
    [5]
    TAUJALE S, BARATTA L R, HUANG J Z, et al. Interactions in ternary mixtures of MnO2, Al2O3, and natural organic matter (NOM) and the impact on MnO2 oxidative reactivity[J]. Environmental Science & Technology, 2016, 50(5):2345-2353.
    [6]
    游洋洋, 卢学强, 许丹宇, 等. 多相催化臭氧化水处理技术研究进展[J]. 环境工程, 2014, 32(1):37-41

    ,54.
    [7]
    童琴, 董亚梅, 赵昆峰, 等. 负载型稀土臭氧氧化催化剂在水处理中的应用进展[J]. 化工进展, 2019, 38(增刊1):226-231.
    [8]
    吴耀国, 赵大为, 焦剑, 等. 臭氧化的负载型非均相催化剂制备及其作用机理[J]. 材料导报, 2005(10):8-11.
    [9]
    赵俊娜, 李再兴, 刘艳芳, 等. Mn/γ-Al2O3催化剂的制备及头孢合成废水的催化臭氧氧化法深度处理[J]. 化工环保, 2014, 34(5):475-480.
    [10]
    张兰河, 郭琳, 李佳宁, 等. Fe2O3/改性沸石催化剂的制备及其催化臭氧氧化对氯苯酚[J]. 化工进展, 2020, 39(8):3086-3094.
    [11]
    高明龙, 夏立全, 陈贵锋, 等. 臭氧催化氧化深度处理亚麻生产废水实验研究[J]. 水处理技术, 2020, 46(6):100-102

    ,6.
    [12]
    肖早早, 李沛怡, 吴波, 等. MnO2/γ-Al2O3催化剂的制备及催化臭氧氧化苯酚废水[J]. 应用化工, 2020, 49(5):1143-1147.
    [13]
    LI L S, YE W Y, ZHANG Q Y, et al. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. Journal of Hazardous Materials, 2009, 170(1):411-416.
    [14]
    龚小芝, 郦和生, 邱小云, 等. 非均相臭氧氧化催化剂的制备及表征[J]. 石油化工, 2020, 49(8):743-747.
    [15]
    刘梦, 戚秀芝, 张科亭, 等. 非均相催化臭氧氧化法深度处理染料废水[J]. 环境污染与防治, 2018, 40(5):572-576

    ,615.
    [16]
    吴俊, 罗丹, 全学军. 臭氧催化剂的制备及其应用研究进展[J]. 化工进展, 2017, 36(3):944-950.
    [17]
    OLANIRAN A O, IGBINOSA E O. Chlorophenols and other related derivatives of environmental concern:properties, distribution and microbial degradation processes[J]. Chemosphere, 2011, 83(10):1297-1306.
    [18]
    USEPA, Water Quality Criteria Summary. Ecological Risk Assessment Branch (WH-585) and Human Risk Assessment Branch (WH-550D), Health and Ecological Criteria Division, USEPA, Washington, DC, USA, 1991.
    [19]
    NAWAZ F, XIE Y B, CAO H B, et al. Catalytic ozonation of 4-nitrophenol over an mesoporous α-MnO2 with resistance to leaching[J]. Catalysis Today, 2015, 258:595-601.
    [20]
    MURRAY L S B J W. The surface chemistry of goethite (alpha FeOOH) in major ion seawater[J]. American Journal of Science, 1981, 281(6):788-806.
    [21]
    许琦, 侯亚芹, 郭倩倩, 等. 活性炭表面含氧官能团对燃煤烟气氮氧化物脱除的影响[J]. 环境化学, 2020, 39(8):2105-2111.
    [22]
    白云, 李琴梅, 刘奕忍, 等. 石墨烯材料表面含氧官能团的表征研究[J]. 分析仪器, 2020(4):83-88.
    [23]
    SAPUTRA E, PINEM J A, BUDIHARDJO M A, et al. Carbon-supported manganese for heterogeneous activation of peroxymonosulfate for the decomposition of phenol in aqueous solutions[J]. Materials Today Chemistry, 2020, 16:100268.
    [24]
    王兵, 袁增, 李永涛, 等. Mn3O4催化臭氧化处理钻井废水[J]. 环境工程学报, 2015, 9(7):3319-3324.
    [25]
    范举红. 活性炭催化臭氧氧化垃圾渗滤液生物处理出水的研究[D]. 北京:清华大学, 2016.
    [26]
    叶国杰, 王一显, 罗培, 等. 水处理高级氧化法活性物种生成机制及其技术特征分析[J]. 环境工程, 2020, 38(2):1-15.
    [27]
    王群, 杨志超, 徐贺. 无机阴离子对催化臭氧氧化邻苯二甲酸的影响[J]. 环境工程学报, 2017, 11(4):2113-2118.
    [28]
    鲁金凤, 张勇, 王艺, 等. 溴酸盐的形成机制与控制方法研究进展[J]. 水处理技术, 2010, 36(11):5-10.
    [29]
    NAWROCKI J, KASPRZYK-HORDERN B. The efficiency and mechanisms of catalytic ozonation[J]. Applied Catalysis B, Environmental, 2010, 99(1/2):27-42.
    [30]
    YU G F, WANG Y X, CAO H B, et al. Reactive oxygen species and catalytic active sites in heterogeneous catalytic ozonation for water purification[J]. Environmental Science & Technology, 2020, 54(10):5931-5946.
    [31]
    MA J, SUI M H, ZHANG T, et al. Effect of pH on MnO<em>x/GAC catalyzed ozonation for degradation of nitrobenzene[J]. Water Research, 2005, 39(5):779-786.
    [32]
    刘莹, 何宏平, 吴德礼, 等. 非均相催化臭氧氧化反应机制[J]. 化学进展, 2016, 28(7):1112-1120.
    [33]
    ZHANG T, LI C J, MA J, et al. Surface hydroxyl groups of synthetic α-FeOOH in promoting OH generation from aqueous ozone:property and activity relationship[J]. Applied Catalysis B:Environmental, 2008, 82(1):131-137.
    [34]
    ZHAO L, SUN Z Z, MA J. Novel relationship between hydroxyl radical initiation and surface group of ceramic honeycomb supported metals for the catalytic ozonation of nitrobenzene in aqueous solution[J]. Environmental Science & Technology, 2009, 43(11):4157-4163.
    [35]
    SUN Q Q, LI L S, YAN H H, et al. Influence of the surface hydroxyl groups of MnO<em>x/SBA-15 on heterogeneous catalytic ozonation of oxalic acid[J]. Chemical Engineering Journal, 2014, 242(1):348-356.
    [36]
    SUI M H, SHENG L, LU K X, et al. FeOOH catalytic ozonation of oxalic acid and the effect of phosphate binding on its catalytic activity[J]. Applied Catalysis B:Environmental, 2010, 96(1):94-100.
    [37]
    ESMAILPOUR A A, MORADI S, YUN J, et al. Promoting surface oxygen vacancies on ceria via light pretreatment to enhance catalytic ozonation[J]. Catalysis Science & Technology, 2019, 9(21):5979-5990.
    [38]
    AFZAL S, QUAN X, ZHANG J L. High surface area mesoporous nanocast LaMO3 (M=Mn, Fe) perovskites for efficient catalytic ozonation and an insight into probable catalytic mechanism[J]. Applied Catalysis B:Environmental, 2017, 206:692-703.
    [39]
    李家耀, 宋卫锋, 李秋华, 等. Mn-Fe-Ce/γ-Al2O3催化剂的制备及其在奶牛养殖废水处理中的臭氧催化氧化性能[J]. 环境工程学报, 2020, 14(4):875-883.
  • Relative Articles

    [1]YAO Haiqian, GUO Xinchao, FU Fengman, YANG Hao, GUO Xiang, ZHANG Fanghong. Mn-Fe-Ce/GAC CATALYZED OZONE OXIDATION TECHNOLOGY FOR ANILINE WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 28-34. doi: 10.13205/j.hjgc.202405004
    [2]PAN Kanghong, MING Leiqiang, GAO Pei, WANG Xudong, LI Xianguo, ZHANG Dahai. SYNERGETIC PRETREATMENT OF EXCESS SLUDGE BY ENHANCING SLUDGE LYSIS BY HYDRODYNAMIC CAVITATION COMBINED WITH OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(1): 126-134. doi: 10.13205/j.hjgc.202401017
    [3]SHI Jianqiang, WANG Bing, CHEN Jianjun, WANG Jiancheng, LI Junhua. RESEARCH PROGRESS OF MERCURY OXIDATION CATALYSTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 229-239. doi: 10.13205/j.hjgc.202409022
    [4]WU Xinming, AN Hao, ZHAO Junyu, OU Zixuan, HAO Liangshan, LI Chao. PREPARATION OF Fe/Mn-PAC CATALYSTS AND DEGRADATION OF REACTIVE BRILLIANT BLUE KN-R BY CATALYTIC OZONATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 32-39. doi: 10.13205/j.hjgc.202304005
    [5]LIANG Baorui, WANG Bin, MA Zhiliang, LIU Junjie, XU Shuiyang, WEI Zhenqiang, ZHANG Hui. SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 8-13,126. doi: 10.13205/j.hjgc.202202002
    [6]XING Xin, LI Na, CHENG Jie. SELECTIVE CATALYTIC OXIDATION PERFORMANCE OF N-BUTYLAMINE OVER Cu-ZSM-5 CATALYSTS WITH DIFFERENT COPPER LOADINGS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 51-58. doi: 10.13205/j.hjgc.202203009
    [7]SUN Ye, PANG Lin-lin, LI Jie, LIU Yong, HU Xiao-tu, LI Xiao-bin, ZHU Tian-le. NITROGEN BALANCE OF OZONE A COMBINED DENITRATION PROCESS OF DEEP OXIDATION AND LIQUID-PHASE ABSORPTION: A CASE STUDY ON A 300 m2 SINTERING FLUE GAS OF AN IRON & STEEL COMPANY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 186-191. doi: 10.13205/j.hjgc.202209025
    [8]SUN Ye, LI Shuaishuai, PANG Linlin, HU Xiaotu, LI Jie, LIU Yong, ZHONG Lu, ZHU Tianle. NO REMOVAL AND NITROGEN CONVERSION PERFORMANCE BY O3 OXIDATION COMBINED WITH WET ABSORPTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 171-176. doi: 10.13205/j.hjgc.202211024
    [9]LI Simin, YANG Hui, FU Yujie, XIAO Feng, GUO Jianning, LIN Chuanggui. CURRENT KNOWLEDGE AND RESEARCHES ON OZONE/CERAMIC MEMBRANE PROCESS IN WATER TREATMENT FIELD[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 212-220. doi: 10.13205/j.hjgc.202203031
    [10]KONG Fan-xin, XIAO Wei-hao, HE Jian-hua, CHEN Jin-fu. CERAMIC MEMBRANE ENHANCED TREATMENT OF POLYMER FLOODING PRODUCED WATER IN HIGH CALCIUM AND MAGNESIUM RESERVOIR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 128-132,72. doi: 10.13205/j.hjgc.202107016
    [11]WU Min-hui, LIU Shuang, QIAN Hao, WANG Zheng. PILOT-SCALE OPTIMIZATION OF OZONE DOSAGE IN UP FLOW ACTIVATED CARBON-ULTRAFILTRATION COMBINED PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 72-77. doi: 10.13205/j.hjgc.202110010
    [12]WANG Shu-ting, WEI Jian-jian, MA Xue-rou, MA De-hua, LI Jian-sheng. CHANGES OF ACUTE TOXICITY AND FLUORESCENCE SPECTRUM PROPERTIES OF PHENOL WASTEWATER TREATED BY OZONE ADVANCED OXIDATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 69-76. doi: 10.13205/j.hjgc.202111008
    [13]GAO Jun-xian, RUAN Zhi-yu, XU Ke-wei, JIANG Hai-dong, ZHANG Li, WANG Yan, ZHENG Kai-kai, LI Ji. CHARACTERISTICS OF OZONE OXIDATION PROCESS ON TREATMENT OF SECONDARY EFFLUENT OF WASTEWATER TREATMENT PLANT[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 88-92,18. doi: 10.13205/j.hjgc.202007014
  • Cited by

    Periodical cited type(3)

    1. 靳苏娜,吕瑞亮. 非均相催化臭氧氧化处理工业废水的研究进展. 无机盐工业. 2024(03): 28-38 .
    2. 陆蛟野,刘林锋,刘仲谋. 高级氧化去除自然水体中药品及护理产品应用研究. 化工设计通讯. 2024(09): 119-120+155 .
    3. 迟彤彤,徐冉云,李菲菲,陈吕军. 臭氧催化氧化含AOX染料废水的效能与风险评估. 生态毒理学报. 2023(01): 288-297 .

    Other cited types(4)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.0 %FULLTEXT: 12.0 %META: 86.2 %META: 86.2 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 13.8 %其他: 13.8 %China: 0.6 %China: 0.6 %United States: 0.6 %United States: 0.6 %[]: 1.2 %[]: 1.2 %上海: 1.2 %上海: 1.2 %东莞: 0.6 %东莞: 0.6 %临汾: 0.6 %临汾: 0.6 %北京: 4.2 %北京: 4.2 %十堰: 0.6 %十堰: 0.6 %南京: 1.8 %南京: 1.8 %台州: 0.6 %台州: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 1.8 %天津: 1.8 %常州: 0.6 %常州: 0.6 %常德: 0.6 %常德: 0.6 %广州: 1.8 %广州: 1.8 %张家口: 1.2 %张家口: 1.2 %成都: 0.6 %成都: 0.6 %昆明: 0.6 %昆明: 0.6 %晋城: 1.2 %晋城: 1.2 %朝阳: 0.6 %朝阳: 0.6 %杭州: 0.6 %杭州: 0.6 %武汉: 1.2 %武汉: 1.2 %济源: 1.2 %济源: 1.2 %温州: 0.6 %温州: 0.6 %湖州: 2.4 %湖州: 2.4 %湛江: 0.6 %湛江: 0.6 %漯河: 1.8 %漯河: 1.8 %烟台: 0.6 %烟台: 0.6 %石家庄: 0.6 %石家庄: 0.6 %肇庆: 0.6 %肇庆: 0.6 %芒廷维尤: 13.2 %芒廷维尤: 13.2 %芝加哥: 1.2 %芝加哥: 1.2 %苏州: 0.6 %苏州: 0.6 %衢州: 0.6 %衢州: 0.6 %西宁: 24.6 %西宁: 24.6 %西安: 2.4 %西安: 2.4 %贵阳: 0.6 %贵阳: 0.6 %运城: 5.4 %运城: 5.4 %遵义: 0.6 %遵义: 0.6 %邯郸: 0.6 %邯郸: 0.6 %郑州: 3.0 %郑州: 3.0 %长沙: 0.6 %长沙: 0.6 %长治: 0.6 %长治: 0.6 %青岛: 0.6 %青岛: 0.6 %其他ChinaUnited States[]上海东莞临汾北京十堰南京台州嘉兴天津常州常德广州张家口成都昆明晋城朝阳杭州武汉济源温州湖州湛江漯河烟台石家庄肇庆芒廷维尤芝加哥苏州衢州西宁西安贵阳运城遵义邯郸郑州长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (143) PDF downloads(3) Cited by(7)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return