Citation: | GAO Yan-ming, WANG Ting, LI Jie-ling, WEI Shi-cheng, LIU Guang-li, LUO Hai-ping, ZHANG Ren-duo. ELECTRICITY GENERATION PROPERTIES OF MICROBIAL FUEL CELL WITH CORN COB ACID PYROLYSIS SOLUTION AS THE SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 127-134. doi: 10.13205/j.hjgc.202111016 |
[1] |
贾启华,时雅滨,许晓娟,等.改性玉米芯在污水处理中的应用研究进展[J].化工新型材料,2020,48(7):34-37.
|
[2] |
RANGABHASHIYAM S, BALASUBRAMANIAN P. The potential of lignocellulosic biomass precursors for biochar production:performance, mechanism and wastewater application:a review[J]. Industrial Crops & Products, 2019, 128:405-423.
|
[3] |
张立秋,王登敏,李淑更,等.固体碳源生物膜SND处理实际低碳源城市污水[J].工业水处理,2019,39(8):19-22
,106.
|
[4] |
卢家磊,兰燕月,张饮江,等.基于异构载体的海产品暂养水的协同处理[J].环境工程学报,2020,14(5):1191-1200.
|
[5] |
PÉREZ J, MUÑOZ-DORADO J, RUBIA D L T, et al. Biodegradation and biological treatments of cellulose, hemicellulose and lignin:an overview[J]. International Microbiology, 2002, 5(2):53-63.
|
[6] |
LIU W, WANG B, HOU Q X, et al. Effects of fibrillation on the wood fibers' enzymatic hydrolysis enhanced by mechanical refining[J]. Bioresource Technology, 2016, 206:99-103.
|
[7] |
鹿钦礼, 李亮, 刘金亮,等. 微生物燃料电池的应用研究进展[J]. 环境工程, 2019, 37(8):95-100.
|
[8] |
闫荣, 雷欣, 慕玉洁, 等. 后续碳源强化ANAMMOX-MFC系统脱氮产电调控策略[J]. 环境工程, 2020, 37(8):1-9.
|
[9] |
XU H, SONG H L, SINGH R P, et al. Simultaneous reduction of antibiotics leakage and methane emission from constructed wetland by integrating microbial fuel cell[J]. Bioresource Technology, 2020, 320(Pt A):124285.
|
[10] |
SAEED T, JIHAD M M. Organic matter and nutrient removal in tidal flow-based microbial fuel cell constructed wetlands:media and flood-dry period ratio[J]. Chemical Engineering Journal, 2021, 411(prepublish):128507.
|
[11] |
MAHIDHARA G, GUPTA D, SASIKALA C,et al. Insights into discrepancy in power generation among glucose and malate grown Rubrivivax benzoatilyticus Ja2 microbial fuel cells[J]. Internation Journal of Hydrogen Energy, 2021, 46(4):3090-3104.
|
[12] |
WANG X, FENG Y J, WANG H M, et al. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells[J]. Environmental Science & Technology, 2009, 43(15):6088-6093.
|
[13] |
HASSAN S H A, GAD EL-RAB S M F, RAHIMNEJAD M, et al. Electricity generation from rice straw using a microbial fuel cell[J]. International Journal of Hydrogen Energy, 2014, 39(17):9490-9496.
|
[14] |
卞爱琴,远野,张璐璐,等.热碱-分步酶水解-厌氧消化工艺处理秸秆畜粪混合物料及其甲烷高值化条件[J].环境科学,2019,40(2):1003-1010.
|
[15] |
杨义,骆仲泱,李国翔,等.纤维素催化热解定向调控制取不含氧烃类液体燃料[J].燃烧科学与技术,2020,26(2):113-119.
|
[16] |
程懿斐,王琦.基于组分分析的农业废弃物类生物质热裂解机理研究[J].中国计量大学学报,2019,30(1):44-50.
|
[17] |
LI X, LU Y B, LUO H P, et al. Microbial stratification structure within cathodic biofilm of the microbial fuel cell using the freezing microtome method[J]. Bioresource Technology, 2017, 241:384-390.
|
[18] |
XU G F, ZHENG X Y, LU Y B, et al. Development of microbial community within the cathodic biofilm of single-chamber air-cathode microbial fuel cell[J]. Science of the Total Environment, 2019, 665:641-648.
|
[19] |
LI X, LU Y b, LUO H p, et al. Effect of ph on bacterial distributions within cathodic biofilm of the microbial fuel cell with maltodextrin as the substrate[J]. Chemosphere, 2021, 265:129088.
|
[20] |
QIN B Y, LUO H P, LIU G L, et al. Nickel ion removal from wastewater using the microbial electrolysis cell[J]. Bioresource Technology, 2012, 121:458-461.
|
[21] |
LUO H P, YU S X, LIU G L, et al. Effect of in-situ immobilized anode on performance of the microbial fuel cell with high concentration of sodium acetate[J]. Fuel, 2016, 182:732-739.
|
[22] |
LIU G L, ZHOU Y, LUO H P, et al. A comparative evaluation of different types of microbial electrolysis desalination cells for malic acid production[J]. Bioresource Technology, 2015, 198:87-93.
|
[23] |
LAN J, REN Y X, LU Y B, et al. Combined microbial desalination and chemical-production cell with fenton process for treatment of electroplating wastewater nanofiltration concentrate[J]. Chemical Engineering Journal, 2019, 359:1139-1149.
|
[24] |
CUI W J, LU Y B, ZENG C P, et al. Hydrogen production in single-chamber microbial electrolysis cell under high applied voltages[J]. Science of the Total Environment, 2021, 780:146597.
|
[25] |
CUSICK R D, BRYAN B, PARKER D S, et al. Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater[J]. Applied Microbiology and Biotechnology, 2011, 89(6):2053-2063.
|
[26] |
LIU G L, YATES M D, CHENG S A, et al. Examination of microbial fuel cell start-up times with domestic wastewater and additional amendments[J]. Bioresource Technology, 2011, 102(15):7301-7306.
|
[27] |
SUN Y, CHENG J J. Dilute acid pretreatment of rye straw and bermudagrass for ethanol production[J]. Bioresource Technology, 2005, 96(14):1599-1606.
|
[28] |
REDDING A P, WANG Z Y, KESHWANI D R, et al. High temperature dilute acid pretreatment of coastal bermuda grass for enzymatic hydrolysis[J]. Bioresource Technology, 2011, 102(2):1415-1424.
|
[29] |
ZHOU N, ZHANG Y M, WU X B, et al. Hydrolysis of chlorella biomass for fermentable sugars in the presence of hcl and mgcl 2[J]. Bioresource Technology, 2011, 102(21):10158-10161.
|
[30] |
ASENSIO Y, FERNANDEZ-MARCHANTE M C, LOBATO J, et al. Influence of the fuel and dosage on the performance of double-compartment microbial fuel cells[J]. Water Research, 2016, 99:16-23.
|
[31] |
KOÓK L, RÓZSENBERSZKI T, NEMESTÓTHY N, et al. Bioelectrochemical treatment of municipal waste liquor in microbial fuel cells for energy valorization[J]. Journal of Cleaner Production, 2016, 112:4406-4412.
|
[32] |
SAMSUDEEN N, RADHAKRISHNAN T K, MATHESWARAN M. Performance comparison of triple and dual chamber microbial fuel cell using distillery wastewater as a substrate[J]. Environmental Progress Sustain Energy, 2015, 34(2):589-594.
|
[33] |
ZHANG L X, ZHOU S G, ZHUANG L, et al. Microbial fuel cell based on Klebsiella pneumoniae biofilm[J]. Electrochemisty Communications, 2008, 10(10):1641-1643.
|
[1] | BI Xinqi, GONG Zhiwei, MA Jie, ZHOU Lichang, JIANG Jinqi, GUO Gang. EFFECTS OF AEROBIC/ANAEROBIC ENVIRONMENTS ON MICROBIAL DEGRADATION EFFICIENCY OF TYPICAL MICROPLASTICS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 88-97. doi: 10.13205/j.hjgc.202407009 |
[2] | ZHOU Youwei, CHEN Jisheng, HE Lei, XING Meiyan. TRANSFORMATION CHARACTERISTICS OF CARBON AND NITROGEN IN SLUDGE-KITCHEN EARTHWORM COMPOST BASED ON LAND USE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 10-22. doi: 10.13205/j.hjgc.202402002 |
[3] | YUAN Shuai, LI Yan, ZHAO Yuxiao, XU Haipeng, CHEN Lei, JIN Fuqiang, HUA Dongliang. INHIBITORY INSTABILITY ANALYSIS OF ANAEROBIC DIGESTION OF KITCHEN WASTE AND MICROECOLOGICAL ANALYSIS OF DIGESTION EFFICIENCY IMPROVEMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 184-192. doi: 10.13205/j.hjgc.202412022 |
[4] | LIU Xiaoji, YAN Kun, XU Heng, WANG Yongqun, WANG Zhihua, ZHANG Dejia, CHANG Fengmin. COUPLING H2-RICH SYNGAS BIOMETHANATION WITH ANAEROBIC DIGESTION OF FOOD WASTE: A PERFORMANCE ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 131-137. doi: 10.13205/j.hjgc.202403016 |
[5] | HU Mengjie, ZHONG Lei, CAI Xiaoxian, QING Jinwu, SUN Yuru, LI Gaoyuan, RUAN Haihua, CHEN Guanyi. METABOLIC MECHANISM OF MICROBIAL DEGRADATION OF PETROLEUM HYDROCARBONS AND ITS RESEARCH PROGRESS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 234-246. doi: 10.13205/j.hjgc.202302031 |
[6] | SONG Na, ZHAO Pan, GUAN Weijie, CHEN Liwei, ZHANG Shuang, WANG Qunhui. EFFECT OF ELECTRO-FERMENTATION ON HIGH TEMPERATURE ANAEROBIC DIGESTION OF FOOD WASTE AND SPENT MUSHROOM SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(7): 145-149. doi: 10.13205/j.hjgc.202307020 |
[7] | DING Zizhen, XU Xianbao, OUYANG Chuang, XUE Gang, LI Xiang. EFFECT OF BIOCHAR ON CAPROATE PRODUCTION DURING FOOD WASTE FERMENTATION AND THE MECHANISM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 29-36. doi: 10.13205/j.hjgc.202212005 |
[8] | WANG Jie, GU Weihua, CHEN Zehui, SONG Erxi, SHENG Nan, YAO Wei, WANG Jingwei, QIAN Yichao. ANALYSIS OF PRACTICAL EFFECTS, PROBLEMS AND COUNTERMEASURES OF DOMESTIC WASTE CLASSIFICATION:A CASE STUDY IN ZHILI TOWN, HUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 188-193. doi: 10.13205/j.hjgc.202203028 |
[9] | ZHANG Tong, ZHANG Liqiu, FENG Li, LIU Yongze, DU Ziwen. ANALYSIS OF CHANGES IN CHARACTERISTICS OF KITCHEN WASTE AFTER SORTING AND DOMESTIC WASTE BEFORE SORTING IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 22-28. doi: 10.13205/j.hjgc.202212004 |
[10] | CHANG Yuan, ZHAN Yabin, TAO Xingling, LIU Yongdi, ZHANG Kui, YU Bo, WEI Yuquan, LI Ji. EFFECT OF EXOGENOUS ADDITIVES ON PHOSPHORUS MOBILIZATION IN PHOSPHORUS-RICH COMPOSTING OF KITCHEN WASTE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 112-119. doi: 10.13205/j.hjgc.202210015 |
[11] | HU Yadong, FAN Depeng, KONG Weijie, LEI Mingke, DU Qingping, QIAN Weiqiang, WANG Futao, LI Jing. IMPROVEMENT OF FOOD WASTE AEROBIC BIOLOGICAL TREATMENT PERFORMANCE BY COMPOUND MICROBIAL AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 97-105. doi: 10.13205/j.hjgc.202204014 |
[12] | LIAO Li-ming, PAN Jia-qi, CHEN Yu, HU Yao-yuan, MO Hui, LU Yu, SU Cheng-yuan. ANALYSIS OF EFFECT OF ADDITION OF CHINESE HERBAL RESIDUE ON FOOD WASTE COMPOSTING BASED ON EEM AND HIGH-THROUGHPUT SEQUENCING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 142-147. doi: 10.13205/j.hjgc.202101022 |
[13] | LI Xu-sheng, LU Sha-sha, JIANG Yuan-yan, WANG Li-ao. EFFECT AND MECHANISM OF BIOCHAR IN MITIGATING ACIDIFICATION OF ANAEROBIC DIGESTION PROCESS FOR FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 179-187. doi: 10.13205/j.hjgc.202112027 |
[14] | GUO Zhi-chao, XU Xian-bao, XU Ting-ting, ZHAO Ai-hua, TAI Jun, LIU Ya-nan, XUE Gang, LI Xiang. ANALYSIS ON FERMENTATION PATHWAY AND CAPROATE PRODUCTION FROM FOOD WASTE BY DIFFERENT INOCULUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 160-168. doi: 10.13205/j.hjgc.202109023 |
[15] | SONG Cai-hong, QI Hui, WEI Zi-min, XIA Xun-feng. HIGH-SPEED TREATMENT OF FOOD WASTE BY CONTINUOUS HIGH-TEMPERATURE COMPOSTING ENHANCED BY THERMOPHILIC MICROBIAL CONSORTIUM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 111-117,130. doi: 10.13205/j.hjgc.202105015 |
[16] | BAI Xiu-jia, ZHANG Hong-yu, GU Jun, ZHANG Qi, WANG Ji-hong. PHYSICO-CHEMICAL PROPERTIES AND RESOURCE UTILIZATION OF STALE REFUSE IN LANDFILL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 116-120,124. doi: 10.13205/j.hjgc.202102018 |
[17] | LIU Hang-yi, YAN Bei-bei, LIN Fa-wei, WANG Yuan, WANG Xu-tong, CHEN Guan-yi. COMPARATIVE ANALYSIS OF TWO KINDS OF FOOD WASTE RECYCLING SCHEMES FROM THE PERSPECTIVE OF LCA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 169-175. doi: 10.13205/j.hjgc.202109024 |
[18] | ZHU Xiao-yan, CHEN Ting, ZHAO Ying-ying, QIU Xiao-peng, YIN Jun, FENG Hua-jun, ZHANG Jin-feng. INFLUENCING FACTORS OF THE SCALE OF FOOD WASTE TREATMENT IN CHINA: STATISTICAL ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 172-177,53. doi: 10.13205/j.hjgc.202103024 |
[19] | ZHAN Ya-bin, WEI Yu-quan, LIN Yong-feng, ZHANG A-ke, TAO Xing-ling, REN Jian-guo, SHEN Wei-dong, LI Ji. EFFECTS OF AERATION MODES ON ENERGY CONSUMPTION, DEHYDRATION EFFICIENCY AND NITROGEN LOSS OF KITCHEN WASTE BIO-DRYING[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 124-130. doi: 10.13205/j.hjgc.202105017 |
[20] | SONG Na, REN Yuan-yuan, WANG Wan-qing, ZHANG Li-rong, GUAN Wei-jie, ZHANG Shuang, WANG Qun-hui. MECHANISM ANALYSIS OF BACTERIOSTATIC EFFECT ON FOOD WASTE ANAEROBIC PRESERVATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 41-46. doi: 10.13205/j.hjgc.202008007 |