Citation: | LIU Zhuan-nian, TENG Ying-ying, FAN Yi-dan. PREPARATION OF GO/AC/Ti COMPOSITE ELECTRODE AND ITS ADSORPTION ELECTROLYSIS PERFORMANCE ON METHYL ORANGE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 143-148. doi: 10.13205/j.hjgc.202111018 |
[1] |
SAMSAMII S, MOHAMADI M, SARRAFZADEH M H, et al. Recent advances in the treatment of dye-containing wastewater from textile industries:overview and perspectives[J]. Process Safety and Environmental Protection, 2020, 143:138-163.
|
[2] |
BENKHAYA S, M'RABET S, HARFI A E. Classifications, properties, recent synthesis and applications of azo dyes[J]. Heliyon, 2020, 6(1):e03271.
|
[3] |
DENG Y, WEN J P, ZHU X, et al. Research on the redox behavior changes of humic-like substances wastewater during electrochemical oxidation process and using the treated effluent to improve the heavily contaminated soil:taking petroleum hydrocarbon contaminated soil as example[J]. Journal of Cleaner Production, 2020, 263:121398.
|
[4] |
JAWAD N H, NAJIM S T. Removal of methylene blue by direct electrochemical oxidation method using a graphite anode[J]. IOP Conference Series:Materials Science and Engineering, 2018, 454(1):012023.
|
[5] |
TIAN J N, YANG M H, MU T Z, et al. Efficient rhodamine B degradation using electro-fenton process with PbO2-coated titanium as the anode[J].Environmental Progress & Sustainable Energy, 2018,38(1):189-197.
|
[6] |
薛娟琴,王温桥,孙祺鑫,等.分层电沉积制备聚吡咯/壳聚糖/氧化石墨烯复合电极及其在CDI技术中的应用[J].功能材料,2020,51(9):9151-9158.
|
[7] |
于洁,王洪杰,吉庆华,等.镧铁羟基氧化物修饰还原氧化石墨烯复合电极材料电吸附除磷效能及机理研究[J].环境科学学报, 2021, 41(3):980-990.
|
[8] |
SRINIVASAN S, NESAKUMAR N, RAYAPPAN J B B, et al. Electrochemical detection of imidacloprid using Cu-rGO composite nanofibers modified glassy carbon electrode[J]. Bulletin of Environmental Contamination and Toxicology, 2020, 104:449-454.
|
[9] |
WANG J Q, LI Q, PENG C, et al. To increase electrochemical performance of electrode material by attaching activated carbon particles on reduced graphene oxide sheets for supercapacitor[J]. Journal of Power Sources, 2020, 450:227611.
|
[10] |
CHEN J, YAO B W, LI C, et al. An improved Hummers method for eco-friendly synthesis of graphene oxide[J]. Carbon, 2013, 64(1):225-229.
|
[11] |
MARCANO D C, KOSYNKIN D V, BERLIN J M, et al. Improved synthesis of graphene oxide[J]. Acs Nano, 2010, 4(8):4806-4819.
|
[12] |
李明伟, 杨绍斌. 介孔CoMn2O4/还原氧化石墨烯复合材料的制备及其超级电容性能[J]. 硅酸盐学报, 2021, 49(1):167-173.
|
[13] |
CHAVEZ E I, BARO M D, ROSSINYOL E, et al. Comparative electrochemical oxidation of methyl orange azo dye using Ti/Ir-Pb, Ti/Ir-Sn, Ti/Ru-Pb, Ti/Pt-Pd and Ti/RuO2 anodes[J]. Electrochimica Acta, 2017, 244(1):199-208.
|
[14] |
LI X, TANG Y, SONG J H, et al. Self-supporting activated carbon/carbon nanotube/reduced graphene oxide flexible electrode for high performance supercapacitor[J]. Carbon, 2018, 129(1):236-244.
|
[15] |
BOUIBED A, DOUFNOUNE R. Synthesis and characterization of hybrid materials based on graphene oxide and silica nanoparticles and their effect on the corrosion protection properties of epoxy resin coatings[J]. Journal of Adhesion Science & Technology, 2019, 33(8):834-860.
|
[16] |
AWASTHI G P, BHATTARAI D P, MAHARJAN B, et al. Synthesis and characterizations of activated carbon from Wisteria sinensis seeds biomass for energy storage applications[J]. Journal of Industrial and Engineering Chemistry, 2019, 72(1):265-272.
|
[17] |
JING M H, XU Z Y, FANG D W, et al. Anchoring effect of the partially reduced graphene oxide doped electrospun carbon nanofibers on their electrochemical performances in vanadium flow battery[J]. Journal of Power Sources, 2019, 425(1):94-102.
|