Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021
Citation: FU Li-ya, LI Min, ZHOU Jian, WU Chang-yong, ZHU Chen, YU Yin, SONG Yu-dong. MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 159-165. doi: 10.13205/j.hjgc.202111021

MICRO FLOCCULATING SAND FILTER-CATALYTIC OZONATION ENHANCED COD REMOVAL FROM BIO-TREATED PETROCHEMICAL WASTEWATER

doi: 10.13205/j.hjgc.202111021
  • Received Date: 2021-07-01
    Available Online: 2022-01-26
  • In order to enhance the COD removal of petrochemical biochemical effluent, the removal effect of micro flocculation sand filtration and ozone catalytic oxidation on COD in petrochemical biochemical effluent was analyzed. The COD removal under different combination modes of ozone catalytic oxidation tower was compared. The lab-scale, pilot-scale and productive scale of catalytic ozonation were carried out. The ozonation tower with two stages, one-stage aeration and one-stage reflux (reflux ratio 100%) were recommended for its good performance. When the bio-treated petrochemical wastewater was 70~120 mg/L, micro flocculating sand filter effluent was 65~113 mg/L, the remocal rate of COD in two-stage effluent reached 35.0%~42.6%, meeting the emission standard for petroleum chemical industry(GB 31571-2015). Compared with the one stage aeration process production test device, ozone consumption for per unit COD of the selected optimized technology was 1.04 g/g and reduced by 21.2% comparing with the original process (single stage ozonation).
  • [1]
    生态环境部. 环境统计年鉴[M]. 北京:中国环境年鉴社,2018.
    [2]
    WU C Y, ZHOU Y X, SUN Q L, et al. Appling hydrolysis acidification-anoxic-oxic process in the treatment of petrochemical wastewater:from bench scale reactor to full scale wastewater treatment plant[J]. Journal of Hazardous Materials, 2016, 309:185-191.
    [3]
    ZHANG S Y, WU C Y, ZHOU Y X, et al. Effect of wastewater particles on catalytic ozonation in the advanced treatment of petrochemical secondary effluent[J]. Chemical Engineering Journal,2018, 345:280-289.
    [4]
    WU C Y, LI Y N, ZHOU Y X, et al. Upgrading the Chinese biggest petrochemical wastewater treatment plant:technologies research and full scale application[J]. Science of the Total Environment, 2018, 633:89-197.
    [5]
    FU L Y, WU C Y, ZHOU Y X, et al. Ozonation reactivity characteristics of dissolved organic matter in secondary petrochemical wastewater by single ozone, ozone/H2O2, and ozone/catalyst[J]. Chemosphere,2019,233:34-43.
    [6]
    WU C Y, ZHOU Y X, ZHANG S Y, et al. The effect of toxic carbon source on the reaction of activated sludge in the batch reactor[J]. Chemosphere,2018,194:784-792.
    [7]
    谭煜, 付丽亚, 周鉴, 等. 胞外聚合物(EPS)对污水处理影响的研究进展[J]. 环境工程技术学报,2021,11(2):307-313.
    [8]
    王树涛,王虹,马军,等. 我国北方城市污水处理厂二级处理出水的水质特性[J]. 环境科学,2009,30(4):1099-1104.
    [9]
    ROSENBERGER S, KRAUME M. Filterability of activated sludge in membrane bioreactor[J]. Desalination, 2002,146(1/2/3):373-379.
    [10]
    LEAD J R, WILKINSON K J. Aquatic colloids and nanoparticles:current knowledge and future trends[J]. Environmental Chemistry, 2006,3(3):159-171.
    [11]
    WAELES M, TANGUY V, LESPES G, et al. Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters:an approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP)[J]. Estuarine Coastal and Shelf Science, 2008,80:538-544.
    [12]
    YAN C X, NIE M H, YANG Y, et al. Effect of colloids on the occurrence, distribution and photolysis of emerging organic contaminants in wastewaters[J]. Journal of Hazard Materials, 2015,299:241-248.
    [13]
    YAN C X, YANG Y, ZHOU J L, et al. Selected emerging organic contaminants in the Yangtze Estuary, China:a comprehensive treatment of their association with aquatic colloids[J]. Journal of Hazard Materials, 2015,283:14-23.
    [14]
    LU Y X, GAO X L, SONG J M, et al. Colloidal toxic trace metals in urban riverine and estuarine waters of Yantai City, southern coast of North Yellow Sea[J]. Science of the Total Environment, 2020, 717:135265.
    [15]
    ZUCKER I, LESTER Y, AVISAR D, et al. Influence of wastewater particles on ozone degradation of trace organic contaminants[J]. Environmental Science & Technology. 2015,49:301-308.
    [16]
    METCALF EDDY I, MOHAMMAD A O, TCHOBANOGLOUS G. Wastewater engineering:treatment and reuse[M]. 5th Ed.New York:McGraw Hill Education Press, 2013.
    [17]
    BAR-ZEEV E, BELKIN N, LIBERMAN B, et al. Rapid sand filtration pretreatment for SWRO:microbial maturation dynamics and filtration efficiency of organic matter[J]. Desalination, 2012,286:120-130.
    [18]
    ALTMANN J, RUHI A S, SAUTER D, et al. Integrating organic micropollutant removal into tertiary filtration:combining PAC adsorption with advanced phosphorus removal[J]. Water Research, 2015,84:58-65.
    [19]
    王雅宁,吴昌永,周岳溪,等. PAC和PAFC对内循环连续砂滤器处理石化二级出水的影响研究[J]. 中国环境科学,2016,36(12):3625-3630.
    [20]
    丁岩,吴昌永,周岳溪,等. 活性炭吸附石化二级出水有机物去除特性研究[J]. 环境科学学报,2016,36(4):1183-1189.
    [21]
    ZHENG X, KHAN M T, CROUE J P. Contribution of effluent organic matter (EFOM) to ultrafiltration (UF) membrane fouling:isolation, characterization, and fouling effect of EFOM fractions[J]. Water Research, 2014,65:414-424.
    [22]
    李欣欣,解立平,王蒙,等. 回流固定床臭氧催化氧化煤化工反渗透浓水[J]. 化工进展,2020,39(2):760-766.
    [23]
    任安东,郑义,孙天姿,等. 回流时间对厨余垃圾厌氧发酵的影响[J/OL].环境工程. https://kns.cnki.net/kcms/detail/11.2097.X.20210728.1515.002.html.
    [24]
    李长刚,阎光绪,郭绍辉.内循环回流比和碳源投加量对两段进水A/O工艺去除重油加工污水氮污染物的影响[J]. 石油科学通报,2018,3(4):475-482.
    [25]
    SUN X M, WU C Y, ZHOU Y X, et al. Using DOM fraction method to investigate the mechanism of catalytic ozonation for real wastewater[J]. Chemical Engineering Journal,2019,369:100-108.
    [26]
    曹臣,韦朝海,杨清玉,等. 废水处理生物出水中COD构成的解析:以焦化废水为例[J]. 环境化学,2012(10):1494-1501.
  • Relative Articles

    [1]LIU Wei, XU Zhiqiang, LI Hongxing, CAO Chenjie, DONG Wen, FENG Minquan, QI Mingyang, LI Jiangbo, KOU Xiaomei, SHAO Tian. IMMOBILIZATION EFFECT OF SLUDGE BIOCHAR ON HEAVY METALS IN CONTAMINATED DREDGED SEDIMENT IN RIVER CHANNELS IN MINING REGION[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 32-39. doi: 10.13205/j.hjgc.202402004
    [2]LIU Junwu, CAI Jingju, FANG Yingchun, CAO Jingxiao, ZHU Jian, WANG Ping, JIANG Xiaxin, ZHU Shanshan, ZHANG Jinjin. SYNCHRONOUS REMOVAL OF MOISTURE AND ORGANIC POLLUTANTS IN DREDGING SEDIMENT BY ELECTRO-FENTON[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 76-81,108. doi: 10.13205/j.hjgc.202306011
    [3]SUN Yingjie, WANG Yan, GU Kai, LI Weihua, XIN Mingxue, BIAN Rongxing, WANG Huawei, WANG Yanan. REVIEW ON INFLUENCING FACTORS OF DIOXIN LEACHED FROM STABILIZED FLY ASH IN LANDFILL ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 225-230,238. doi: 10.13205/j.hjgc.202208032
    [4]MA Tao, SONG Jiang-min, LIU Qun-qun, SHENG Yan-qing. COMPARISON OF ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN DREDGED SEDIMENT TREATED BY DIFFERENT METHODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 141-146,152. doi: 10.13205/j.hjgc.202102023
    [5]LI Gang, HAN Ming-shuang, XU Hai-hong. UTILIZATION OF SEDIMENTS DREDGED FROM WATER BODIES AND ITS ENERGY REUTILIZATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 55-58,71. doi: 10.13205/j.hjgc.202106009
    [6]YANG Wei, ZHENG Ren-dong, ZHANG Hai-dan, ZHU Gao-jun, YAN Mi. DEVELOPMENT PROCESS AND TREND OF WASTE TO ENERGY PROJECTS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 124-129. doi: 10.13205/j.hjgc.202012021
    [12]Ding Jing, Lei Yang. RESEARCH ON SEMI-AEROBIC BIOREACTOR LANDFILL SYSTEM: LEACHATE CHARACTERISTICS[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(3): 6-10. doi: 10.13205/j.hjgc.201503002
    [13]Lei Xiaoling Peng Xiaolan Huang Yuanyuan Yang Bailu, . RESEARCH ON THE EFFECTS OF GRAB DREDGING EQUIPMENT ON SEDIMENT POLLUTANT RELEASE REGULARITY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 97-99. doi: 10.13205/j.hjgc.201504020
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 20.8 %FULLTEXT: 20.8 %META: 79.2 %META: 79.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 19.6 %其他: 19.6 %China: 1.9 %China: 1.9 %上海: 1.9 %上海: 1.9 %兰州: 0.9 %兰州: 0.9 %北京: 3.7 %北京: 3.7 %十堰: 0.9 %十堰: 0.9 %南昌: 0.9 %南昌: 0.9 %台州: 4.7 %台州: 4.7 %天津: 0.9 %天津: 0.9 %延安: 0.9 %延安: 0.9 %张家口: 6.5 %张家口: 6.5 %昌吉: 0.9 %昌吉: 0.9 %杭州: 2.8 %杭州: 2.8 %温州: 0.9 %温州: 0.9 %湖州: 2.8 %湖州: 2.8 %漯河: 1.9 %漯河: 1.9 %芒廷维尤: 35.5 %芒廷维尤: 35.5 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %衢州: 2.8 %衢州: 2.8 %西宁: 5.6 %西宁: 5.6 %重庆: 0.9 %重庆: 0.9 %铁岭: 0.9 %铁岭: 0.9 %其他China上海兰州北京十堰南昌台州天津延安张家口昌吉杭州温州湖州漯河芒廷维尤芝加哥苏州衢州西宁重庆铁岭

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (149) PDF downloads(13) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return