Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023
Citation: SUN Jun-liang, GONG Zhi-qiang, LI Lu, NIU Hao-bo, YIN Le-yi, CHEN Jian. OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 172-178. doi: 10.13205/j.hjgc.202111023

OPTIMIZATION OF GROUNDWATER PUMPING SCHEME FOR A CHLORINATED HYDROCARBON-CONTAMINATED SITE

doi: 10.13205/j.hjgc.202111023
  • Received Date: 2020-10-20
    Available Online: 2022-01-26
  • Taking the groundwater pumping scheme of a chlorinated hydrocarbon-contaminated site as an example, this paper used a numerical model combined algorithm and carried out optimization. The aim of pump-and-treat technology was that carbon tetrachloride concentration of the groundwater was less than 1500 μg/L after continuous extraction for 360 days. The optimization objective function was that the minimum total extraction volume. The simulation and optimization results showed that extraction volume of the initial wells, located in the central axis of the contaminated plume, was better than that of the uniform distribution. We divided the 360 days into two stages, and found that the total extraction volume reduced by 8.3% compared with the constant model. After dividing the 360-day extraction time into four stages, the optimized total extraction volume was reduced by 2.8% compared with the two stages model. However, the pumping rate of the fourth stage was only 274 m3/d. When keeping the total extraction amount stable, increasing the extraction rate of the fourth stage to 814 m3/d could shorten the extraction time to 300 days.
  • [1]
    ROSNER D, MARKOWITZ G. Persistent pollutants:a brief history of the discovery of the widespread toxicity of chlorinated hydrocarbons[J]. Environmental Research, 2013, 120(1):126-133.
    [2]
    高存荣, 王俊桃. 我国69个城市地下水有机污染特征研究[J]. 地球学报, 2011,32(5):581-591.
    [3]
    宋震宇, 杨伟, 王文茜, 等. 氯代烃污染地下水修复技术研究进展[J]. 环境科学与管理, 2014, 39(4):104-106.
    [4]
    宋汉周, ALLAN D W. 抽出处理措施的有效性评价:某碳酸盐岩含水层中地下水有机污染及其去除研究之三[J]. 河海大学学报(自然科学版), 2000, 28(4):67-98.
    [5]
    蒲敏.污染场地地下水抽出处理技术研究[J].环境工程,2017,35(4):6-10.
    [6]
    吴玉成. 治理地下水有机污染抽出处理技术影响因素分析[J]. 水文地质工程地质, 1998, 25(1):27-29

    ,42.
    [7]
    白相东, 张艳, 刘智荣, 等. 某冶炼厂污染场地抽出-处理技术优化方案研究[J]. 防灾科技学院学报, 2012, 14(4):26-29.
    [8]
    顾栩, 杜鹏, 单慧媚, 等. 水力截获技术在地下水污染修复中的应用:以某危险废物填埋场为例[J]. 安全与环境工程, 2014, 21(4):52-58.
    [9]
    宫志强, 陈坚, 杨鑫鑫, 等. 某铬污染场地地下水抽水方案优化[J]. 环境工程, 2019, 37(5):1-3

    ,75.
    [10]
    HUANG C L, MAYER A S. Pump-and-treat optimization using well locations and pumping rates as decision variables[J]. Water Resources Research, 1997, 33(5):1001-1012.
    [11]
    CHANG L C, CHU H J, HSIAO C T. Optimal planning of a dynamic pump-treat-inject groundwater remediation system[J]. Journal of Hydrology (Amsterdam), 2007, 342(3/4):295-304.
    [12]
    KAZEMZADEH-PARSI M J, DANESHAMAND F, AHMADFARD M A, et al. Optimal groundwater remediation design of pump and treat systems via a simulation-optimization approach and firefly algorithm[J]. Journal of Applied Stats, 2015, 47(1):1-17.
    [13]
    PARK Y C. Cost-effective optimal design of a pump-and-treat system for remediating groundwater contaminant at an industrial complex[J]. Geosciences Journal, 2016, 20(6):891-901.
    [14]
    AKBARPOUR A, ZEYNALI M J, TAHROUDI M N, et al. Locating optimal position of pumping wells in aquifer using meta-heuristic algorithms and finite element method[J]. Water Resources Management, 2020, 34(1):21-34.
    [15]
    卞荣伟, 宋健, 孙晓敏,等.MGO软件在地下水污染抽出-处理方案优化中的应用[J]. 地下水, 2018,40(3):12-15.
    [16]
    BEAR J, SUN Y W. Optimization of pump-treat-inject (PTI) design for the remediation of a contaminated aquifer:multi-stage design with chance constraints[J]. Journal of Contaminant Hydrology, 1998, 29(3):225-244.
    [17]
    WANG Y, XIAO W H, WANG Y C, et al. Simulating-optimizing coupled method for pumping well layout at a nitrate-polluted groundwater site[J]. IOP Conference Series Earth and Environmental, 2018, 191(1):012071.
    [18]
    张双圣. 基于不确定理论的地下水污染源识别及抽出-处理优化方法研究[D].徐州:中国矿业大学,2019.
    [19]
    CHANG L C, CHU H J, HSIAO C T. Integration of optimal dynamic control and neural network for groundwater quality management[J]. Water Resources Management, 2012, 26(5):1253-1269.
    [20]
    SADEGHFAM S, HASSANZADEH Y, KHATIBI R, et al. Groundwater remediation through pump-treat-inject technology using optimum control by artificial intelligence (OCAI)[J]. Water Resources Management, 2019, 33(3):1123-1145.
    [21]
    MAJUMDER P, ELDHO T I. Artificial neural network and grey wolf optimizer based surrogate simulation-optimization model for groundwater remediation[J]. Water Resources Management, 2020, 34(2):763-783.
    [22]
    BECKER D J, MINSKER B S, GREENWALD R, et al. Reducing long-term remedial costs by transport modeling optimization[J]. Ground Water, 2006, 44(6):864-875.
    [23]
    姜烈, 何江涛, 姜永海, 等地下水硝酸盐污染抽出处理优化方法模拟研究[J]. 环境科学, 2014,35(7):2572-2578.
    [24]
    万鹏, 张旭, 李广贺, 等.基于模拟-优化模型的某场地污染地下水抽水方案设计[J]. 环境科学研究, 2016,(29):1608-1616.
    [25]
    罗建男, 李多强, 范越, 等. 某垃圾填埋场地下水质监测井网优化设计:基于模拟优化法[J]. 中国环境科学, 2019, 39(1):198-204.
    [26]
    ZHENG C,WANG P P.MGO:A Modular Groundwater Optimizer Incorporating MODFLOW/MT3DMS,Documentation and User's Guide[R].The University of Alabama and Groundwater Research Ltd, Tuscaloosa,AL,2003.
    [27]
    WANG M, ZHENG C. Optimal remediation policy selection under general conditions[J]. Ground Water, 1997, 35(5):757-764.
  • Relative Articles

    [1]LU Jinsuo, MA Xinting, JIANG Hao, YU Mengzhu, SONG Guang, CHEN Xingdu. REMOVAL PERFORMANCE AND DEGRADATION MECHANISM OF PARTICULATE MATTER AND H2S GAS BY SOLUTION ABSORPTION-ELECTRO-FENTON PROCESS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 155-165. doi: 10.13205/j.hjgc.202412019
    [2]YAO Xinhua, LU Guanghua. EFFECTS OF SLUDGE BLENDING SINTERING ON MINERALIZATION, EMISSION OF FLUE GAS PARTICLES AND DIOXINS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 190-196,157. doi: 10.13205/j.hjgc.202312023
    [3]LI Dou, WANG Yan, LIU Ruhai, SUN Haolin, YIN Pingping, ZHOU Xuyuan, MO Bing, LI Dongting. TEMPORAL VARIATION, SOURCE ANALYSIS AND ENVIRONMENTAL EFFECTS OF WATER-SOLUBLE IONS IN TSP IN QINGDAO[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 109-116,126. doi: 10.13205/j.hjgc.202308014
    [4]DENG Jianguo, WANG Dongbin, LIU Tonghao, LI Xue, YANG Shuwen, DUAN Lei, JIANG Jingkun. ORGANIC COMPONENTS IN CONDENSABLE PARTICLE MATTER EMITTED FROM COAL-FIRED POWER PLANTS AND STEEL PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 13-17,31. doi: 10.13205/j.hjgc.202203003
    [5]DU Bo-ying, MA Yun-feng, WANG Qi, WANG Yue, SHI Xiao-fei, WANG Shuai, BIAN Yu-shan. ANALYSIS OF DIFFUSION CHARACTERISTICS AND FORMATION CAUSES OF PM2.5 IN SHENYANG USING WRF-CHEM[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 89-97,104. doi: 10.13205/j.hjgc.202102014
    [6]ZHU Hong-tang, SHEN Xian-kun, LI Run-hao, HU Xiu-de, SUN De-shuai, CHEN Zhao-jun. REMOVAL OF FINE PARTICLES FROM COAL COMBUSTION WITH CHEMICAL AGGLOMERATION AGENTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 97-102,91. doi: 10.13205/j.hjgc.202012017
  • Cited by

    Periodical cited type(5)

    1. 蒋军成,胡政. 燃煤电站中锅炉燃烧烟气余热节能分析. 能源与环保. 2023(02): 173-179 .
    2. 李新强,赖志强,艾华,刘健,刘维鸽. 炼钢厂热泼渣废气白雾治理及水分回收系统. 重型机械. 2022(03): 32-35 .
    3. 吴剑恒. “双碳”目标下燃煤背压机组锅炉烟气余热深度利用研究. 电力学报. 2022(05): 384-421 .
    4. 梅欢. 直接换热烟气提水技术及其工程应用. 电力科技与环保. 2021(02): 16-21 .
    5. 刘舒巍,李红飞,舒斌,靳超然. 氟塑料的改性及其在换热器领域的应用研究进展. 化工管理. 2019(13): 103-104 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402468
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.2 %FULLTEXT: 17.2 %META: 82.8 %META: 82.8 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.7 %其他: 20.7 %其他: 1.1 %其他: 1.1 %东莞: 1.1 %东莞: 1.1 %北京: 3.4 %北京: 3.4 %台州: 5.7 %台州: 5.7 %呼和浩特: 2.3 %呼和浩特: 2.3 %扬州: 1.1 %扬州: 1.1 %杭州: 5.7 %杭州: 5.7 %湖州: 1.1 %湖州: 1.1 %漯河: 2.3 %漯河: 2.3 %漳州: 1.1 %漳州: 1.1 %芒廷维尤: 31.0 %芒廷维尤: 31.0 %芝加哥: 1.1 %芝加哥: 1.1 %苏州: 1.1 %苏州: 1.1 %衢州: 1.1 %衢州: 1.1 %西宁: 16.1 %西宁: 16.1 %邯郸: 1.1 %邯郸: 1.1 %重庆: 1.1 %重庆: 1.1 %长春: 1.1 %长春: 1.1 %其他其他东莞北京台州呼和浩特扬州杭州湖州漯河漳州芒廷维尤芝加哥苏州衢州西宁邯郸重庆长春

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (242) PDF downloads(9) Cited by(8)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return