Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Ya-qiong, LIU Hong-bo, DIE Qing-qi, HUANG Qi-fei, YANG Yu-fei. PRESENT SITUATION AND COUNTERMEASURES OF WASTE SALT PRODUCTION, UTILIZATION AND DISPOSAL IN PESTICIDE INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 148-152. doi: 10.13205/j.hjgc.202112022
Citation: ZHANG Li, GUO Chao-hui, RAN Hong-zhen, XIAO Xi-yuan, HU Zhi-hao, LI Zhang-zhou. PARTICLE SIZE AND OCCURRENCE CHARACTERISTICS OF ARSENIC IN RIVER SEDIMENTS OF ARSENIC-BEARING MINE AREAS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 38-43,119. doi: 10.13205/j.hjgc.202112006

PARTICLE SIZE AND OCCURRENCE CHARACTERISTICS OF ARSENIC IN RIVER SEDIMENTS OF ARSENIC-BEARING MINE AREAS

doi: 10.13205/j.hjgc.202112006
  • Received Date: 2020-11-11
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • River sediments are the transporters of pollutants. In this study, the effects of sediments particle size on hydraulic transport, content distribution, and speciation of arsenic in arsenic-bearing mine river were studied. The results showed that arsenic pollution was prominent in river sediments of the mine area; particle size affected not only the distribution and speciation of arsenic in various sediment particle size fractions but also their transport in water environment. The sediments were mainly composed of coarse sand and medium sand in the upstream and middle and upper reaches. In the upstream reaches, arsenic content in the sediments was 18.53 mg/kg, which mainly came from the primary minerals and existed in stable forms, such as well-crystallized hydrous Fe and Al oxides and residual. The content of arsenic reached 3492 mg/kg in the middle and upper reaches, which mainly came from oxide dissolution of arsenic-bearing ore and some original mineral. The amorphous and poorly-crystalline hydrous oxides of Fe and Al and residual were the main existing forms in coarse sand and medium sand components(73.90%), accounting for 83.71%, 83.82% of the total arsenic content, respectively. In fine sand, very fine sand and silty sand, the specific adsorption and amorphous and poorly-crystalline hydrous Fe and Al oxides were the main constituents, accounting for 58.72%, 58.51% and 73.10% respectively. The arsenic contents were still 371, 247 mg/kg in the sediments from middle and lower reaches of 2 km and 4 km away from the mine. The sediments existed mainly in fine sand, extremely fine sand and silt-sand, and predominant forms of arsenic were the specific adsorption and amorphous and poorly-crystalline hydrous Fe and Al oxides. Arsenic in the component less than 0.25 mm(fine sand, very fine sand, silted sand) was 1.5 times of that of the coarse sand component, and fine grain sediments played a leading role in the hydraulic transmission of arsenic. Therefore, the ecological control and soil and water conservation in the upper and middle reaches and the ecological dredging and rehabilitation of sediments in the downstream reach should be strengthened.
  • [1]
    BAEYENS W,MIRLEAN N,BUNDSCHUH J,et al.Arsenic enrichment in sediments and beaches of Brazilian coastal waters:a review[J].Science of the Total Environment,2019,681(1):143-154.
    [2]
    蹇丽,黄泽春,刘永轩,等.采矿业污染河流底泥及河漫滩沉积物的粒径组成与砷形态分布特征[J].环境科学学报,2010,30(9):1862-1870.
    [3]
    LIU J J,XU Y Z,CHENG Y X,et al.Occurrence and risk assessment of heavy metals in sediments of the Xiangjiang River,China[J].Environmental Science and Pollution Research,2017,24(3):2711-2723.
    [4]
    ZHUANG Q F,LI G,LIU Z Y.Distribution,source and pollution level of heavy metals in river sediments from South China[J].Catena,2018,170:386-396.
    [5]
    王辉,赵悦铭,刘春跃,等.辽河干流沉积物重金属污染特征及潜在生态风险评价[J].环境工程,2019,37(11):65-69.
    [6]
    邓瑜衡,赵军.沉积物中重金属的迁移转化影响机制研究[J].环境工程,2017,35(4):184-189.
    [7]
    BOUZEKRI S,HACHIMI M,TOUACH N,et al.The study of metal (As,Cd,Pb,Zn and Cu) contamination in superficial stream sedimentsaround of Zaida mine (High Moulouya-Morocco)[J].Journal of African Earth Sciences,2019,154:49-58.
    [8]
    张远,石陶然,于涛.滇池典型湖区沉积物粒径与重金属分布特征[J].环境科学研究,2013,26(4):370-379.
    [9]
    王胜强,孙津生,丁辉.海河沉积物重金属污染及潜在生态风险评价[J].环境工程,2005,23(2):62-64.
    [10]
    INZUNZA J,RUIZ C,NEVÁREZ M,et al.Biomonitoring of Cd,Cr,Hg and Pb in the Baluarte River basin associated to a mining area (NW Mexico)[J].2011,409(18):3527-3536.
    [11]
    米玉婷,蔡永兵,于靖,等.金矿区河流沉积物中砷形态及释放动力学[J].环境科学与技术,2016,39(3):6-11.
    [12]
    WENZEL W W,KIRCHBAUMER N,PROHASKA T,et al.Arsenic fractionation in soils using an improved sequential extraction procedure[J].Analytica Chimica Acta,2001,436(2):309-323.
    [13]
    YU T,ZHANG Y,ZHANG Y.Distribution and bioavailability of heavy metals in different particle-size fractions of sediments in Taihu Lake,China[J].Chemical Speciation and Bioavailability,2012,24(4):205-215.
    [14]
    CHRISTOPHER E,JAMIESON H,PALMER M,et al.Controls governing the spatial distribution of sediment arsenic concentrations and solid-phase speciation in a lake impacted by legacy mining pollution[J].The Science of the Total Environment,2019,654:563-575.
    [15]
    GUO T,LI L G,ZHAI W W,et al.Distribution of arsenic and its biotransformation genes in sediments from the East China Sea[J].Environmental Pollution,2019,253:949-958.
    [16]
    GALLOWAY J,SWINDLES G,JAMIESON H,et al.Organic matter control on the distribution of arsenic in lake sediments impacted by-65 years of gold ore processing in subarctic Canada[J].Science of the Total Environment,2018,622/623:1668-1679.
    [17]
    HERREWEGHE S V,SWENNEN R,VANDECASTEELE C,et al.Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples[J].Environmental Pollution,2003,122(3):323-342.
    [18]
    LIU J J,DIAO Z H,XU X R,et al.In situ arsenic speciation and the release kinetics in coastal sediments:a case study in Daya Bay,South China Sea[J].Science of the Total Environment,2019,650:2221-2230.
    [19]
    LUCIC M,JURINA I,SCANCAR J,et al.Sedimentological and geochemical characterization of river suspended particulate matter (SPM) sampled by time-integrated mass flux sampler (TIMS) in the Sava River (Croatia)[J].Journal of Soils and Sediments,2019,19(2):989-1004.
    [20]
    LIANG J,LIU J,XU G,et al.Distribution and transport of heavy metals in surface sediments of the Zhejiang nearshore area,East China Sea:sedimentary environmental effects[J].Marine Pollution Bulletin,2019,146:542-551.
    [21]
    TANSEL B,RAFIUDDIN S.Heavy metal content in relation to particle size and organic content of surficial sediments in Miami River and transport potential[J].International Journal of Sediment Research,2016,31:324-329.
    [22]
    GROOT A,GOEIJ J,ZEGERS C.Contents and behaviour of mercury as compared with other heavy metals in sediments from rivers Rhine and Ems[J].Geol Mijnbouw,1971,50:393-398.
    [23]
    ACKERMANN F,BERGMANN M,SCHLEICHERT G.Monitoring of heavy metals in coastal and estuarine sediments-a question of grain-size:<20 μm versus<60 μm[J]. Environmental Technology Letters,1983,4:317-328.
    [24]
    LI S Y,YANG C L,PENG C H,et al.Effects of elevated sulfate concentration on the mobility of arsenic in the sediment-water interface[J].Ecotoxicology and Environmental Safety,2018,154:311-320.
    [25]
    DUAN Y H,GAN Y Q,WANG Y X,et al.Arsenic speciation in aquifer sediment under varying groundwater regime and redox conditions at Jianghan Plain of Central China[J].Science of the Total Environment,2017,607/608:992-1000.
    [26]
    ORDIALES E,COVELLI S,RICO J,et al.Occurrence and speciation of arsenic and mercury in estuarine sediments affected by mining activities (Asturias,northern Spain)[J]. Chemosphere,2018,198:281-289.
    [27]
    SELIM A,JEAN J S,YANG H J,et al. Occurrence of arsenic in core sediments and groundwater in the Chapai-Nawabganj District,northwestern Bangladesh[J].Water Research,2010,44:2021-2037.
  • Relative Articles

    [1]CUI Ruoqi, CHE Xiangqian, LU Zhen, LI Yingnan, WANG Pan, REN Lianhai. EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 204-211. doi: 10.13205/j.hjgc.202404024
    [2]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [3]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [4]DU Ying'en, HOU Jingming, CHAI Jie, BAI Guangbi, LI Xuan, ZHANG Hongfang, ZHANG Zhaoan, CHEN Guangzhao, LI Bingyao. TEMPORAL VARIATION CHARACTERISTICS OF PRECIPITATION EXTREMES IN XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 41-46. doi: 10.13205/j.hjgc.202211006
    [5]XIAO Han, HAN Zhi-wei, XIONG Jia, LUO Guang-fei, TIAN Yu-tong, YANG Miao. BIOAVAILABILITY AND ECOLOGICAL RISK ASSESSMENT OF Sb AND As IN TAILINGS OF QINGLONG ANTIMONY MINE IN GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 123-132. doi: 10.13205/j.hjgc.202205018
    [6]JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027
    [7]SUN Tian-zi, WANG Pan, CHEN Xi-teng, CAI Yu-xiao, REN Lian-hai, LV Zheng. EFFECT OF LIQUID BACTERIAL FERTILIZER PREPARED BY BIOGAS SLURRY FROM FOOD WASTE DIGESTING ON PHYSICAL AND CHEMICAL PROPERTIES OF FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 201-206. doi: 10.13205/j.hjgc.202008033
    [8]ZHOU Li-jun, LIN Xiao-bing, WU Lin, HUANG Qian-ru, YU Ying, ZHANG Hong-yan, GUO Nai-jia, ZHANG Yun, LIU Hui. DIFFERENCES ANALYSIS ON PHYSICOCHEMICAL PROPERTITES,MICROBIAL AND ENZYME ACTIVITIES OF CADMIUM CONTAMINATED PADDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 202-206,227. doi: 10.13205/j.hjgc.202010032
    [18]Xu Xin Cui Xiaoai, . STUDY ON SPATIOTEMPORAL EVOLUTION OF ENVIRONMENTAL EFFICIENCY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 127-131. doi: 10.13205/j.hjgc.201508029
    [19]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [20]Lu Sufen, Song Bo, Meng Dongliu, Yu Yuanyuan, Huang Yufei, Yuan Zhennan, Zhong Xuemei. HEAVY METAL CONTENTS IN SOIL AND VEGETABLES OF A TAILING SPILL IN HUANJIANG AND HUMAN HEALTH RISKS ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 130-134. doi: 10.13205/j.hjgc.201510029
  • Cited by

    Periodical cited type(18)

    1. 颜渝森,王健,范例,宾灯辉,蔡洪英,龚先河,甘伟,袁胜. 工业副产盐再利用环境风险评价研究. 环境影响评价. 2025(01): 76-83+89 .
    2. 李明辉,许高洁,宁朋歌. 工业废盐处理及资源化利用进展. 当代化工研究. 2025(01): 10-13 .
    3. 陈诺. 吡虫啉农药废盐中有机物的去除——溶剂萃取法. 四川环境. 2025(01): 131-137 .
    4. 李勇,汤晓娟. 草甘膦制造时母液产排节点及治理技术研究. 山西化工. 2024(01): 123-125+129 .
    5. 庞亚恒,李星宇. 偶氮二氰基戊酸副产废盐热处理工艺研究. 煤炭与化工. 2024(02): 157-160 .
    6. 王燕华,钟晶晶,张文辉. 国内典型行业产生的工业废盐特征污染物分析及综合利用环境安全性研究. 皮革制作与环保科技. 2024(15): 90-93 .
    7. 周哲,崔咪芬,陈献,于瑞兵,徐希化,齐敏,汤吉海,乔旭. 农药氟虫腈与钛白粉副产盐资源化生产电池用磷酸铁工艺. 高校化学工程学报. 2024(05): 762-769 .
    8. 袁定琨,李文健,周一帆,杜航,江子越,林法伟. 制药行业废盐的热处理研究进展及展望. 现代化工. 2024(12): 29-33+38 .
    9. 罗超,吴凯凯,邓雅清. 工业废盐资源化处理技术及工程应用. 盐科学与化工. 2024(12): 6-10 .
    10. 霍慧敏,王年禧,何艺,黄文平,张海东,郑洋,李静,刘研萍,韦洪莲. 我国化工废盐资源化利用产品标准体系建设分析. 环境工程学报. 2024(11): 3139-3148 .
    11. 张森,王军,陈天虎,董仕伟,徐亮,李雅倩,赵月领. 农药行业NaCl-KCl型废盐热处理研究. 无机盐工业. 2023(02): 106-112 .
    12. 翟增秀,肖咸德,孟洁,王静,杨伟华,李伟芳. 典型农药制造企业废气污染物排放特征及风险评估. 环境科学. 2023(02): 730-739 .
    13. 李俊,刘小文,周兆安,毛谙章. 含铜污泥还原熔炼协同处理工业废盐工艺研究. 湖南有色金属. 2023(02): 28-30+53 .
    14. 郝雅琼,黄泽春,黄启飞,杨玉飞. 甘氨酸法生产草甘膦过程中母液产排节点与治理分析. 环境科学研究. 2023(06): 1210-1217 .
    15. 蒋太波. 废盐资源化及热化学处理技术的应用探讨. 四川化工. 2022(01): 55-58 .
    16. 熊言开,闫纪宪,王逵. 农药制造行业常见农药产品危险废物产生和污染特性研究. 山东化工. 2022(13): 212-216 .
    17. 张鹏,潘琦,彭莉,田伟,冉林杰,刘雪. 工业废盐处理处置现状及趋势. 环境卫生工程. 2022(05): 67-71+82 .
    18. 迭庆杞,黄泽春,杨玉飞,黄启飞,郝雅琼. 我国农药工业危险废物产生和污染特性研究. 环境工程技术学报. 2021(06): 1266-1272 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 83.4 %META: 83.4 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.9 %其他: 23.9 %其他: 0.9 %其他: 0.9 %China: 0.2 %China: 0.2 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.7 %Hollywood: 0.7 %Malvern: 0.5 %Malvern: 0.5 %Twinsburg: 0.2 %Twinsburg: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.6 %上海: 1.6 %东莞: 1.6 %东莞: 1.6 %中卫: 0.2 %中卫: 0.2 %临汾: 0.2 %临汾: 0.2 %休斯敦: 1.1 %休斯敦: 1.1 %休斯顿: 0.2 %休斯顿: 0.2 %信阳: 0.2 %信阳: 0.2 %兰开斯特: 0.2 %兰开斯特: 0.2 %北京: 8.0 %北京: 8.0 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.5 %南昌: 0.5 %厦门: 0.9 %厦门: 0.9 %天津: 0.5 %天津: 0.5 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.5 %密蘇里城: 0.5 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.2 %巴黎: 0.2 %常州: 1.1 %常州: 1.1 %常德: 0.2 %常德: 0.2 %广州: 1.6 %广州: 1.6 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.7 %张家口: 0.7 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %新乡: 0.5 %新乡: 0.5 %无锡: 0.5 %无锡: 0.5 %昆明: 0.9 %昆明: 0.9 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.1 %杭州: 1.1 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.5 %济南: 0.5 %济宁: 0.2 %济宁: 0.2 %济源: 0.5 %济源: 0.5 %湖州: 0.7 %湖州: 0.7 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.5 %潍坊: 0.5 %珠海: 0.7 %珠海: 0.7 %瑟普赖斯: 0.2 %瑟普赖斯: 0.2 %盐城: 0.7 %盐城: 0.7 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %纽瓦克: 0.2 %纽瓦克: 0.2 %纽约: 0.5 %纽约: 0.5 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 29.5 %芒廷维尤: 29.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.7 %莫斯科: 0.7 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衢州: 0.2 %衢州: 0.2 %西双版纳傣族自治州: 0.5 %西双版纳傣族自治州: 0.5 %西宁: 0.2 %西宁: 0.2 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.6 %运城: 1.6 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.6 %郑州: 1.6 %重庆: 1.1 %重庆: 1.1 %金曼: 0.2 %金曼: 0.2 %银川: 0.2 %银川: 0.2 %锦州: 0.5 %锦州: 0.5 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %黑格斯敦: 0.2 %黑格斯敦: 0.2 %其他其他ChinaGwynn OakHollywoodMalvernTwinsburg[]上海东莞中卫临汾休斯敦休斯顿信阳兰开斯特北京匹兹堡十堰南京南昌厦门天津宣城密蘇里城巴音郭楞巴黎常州常德广州弗吉张家口成都扬州新乡无锡昆明晋城朝阳杭州格兰特县武汉沈阳济南济宁济源湖州漯河潍坊珠海瑟普赖斯盐城石家庄福州纽瓦克纽约绵阳芒廷维尤芝加哥苏州莫斯科蒙特利尔衢州西双版纳傣族自治州西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆金曼银川锦州长沙长治青岛黑格斯敦

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (231) PDF downloads(11) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return