Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020
Citation: HUANG Chun-tao, FAN Dong-ping, LU Ji-fu, LIAO Qi-feng. PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 135-140. doi: 10.13205/j.hjgc.202112020

PREDICTION OF PM2.5 AND PM10 CONCENTRATION IN GUANGZHOU BASED ON DEEP LEARNING MODEL

doi: 10.13205/j.hjgc.202112020
  • Received Date: 2021-05-12
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • Precisely predicting the concentration of PM2.5 and PM10 in air pollution can provide a scientific basis for the prevention and control of air pollution. However, in the absence of pollution source emission inventory and visibility data, the prediction accuracy of the existing PM2.5 and PM10 concentration prediction methods are not high. In addition, it is rarely reported that the current deep learning models have been applied successively to PM2.5 and PM10 concentration prediction research. Based on the historical air quality monitoring data and weather monitoring historical data in Guangzhou from June 1, 2015 to January 10, 2018, two traditional machine learning models(random forest model(RF) and XGBoost model) and two deep learning models(short-long-term memory network(LSTM) and gated recurrent unit network(GRU) were constructed respectively, to predict the daily average concentration of PM2.5 and PM10 in Guangzhou. The results showed that the four models could also well predict the daily average concentration of PM2.5 and PM10 in the absence of pollution source emission inventory and visibility data. According to the evaluation metrics, i.e., MSE, RMSE, MAPE, MAE, and R2, the PM2.5 and PM10 prediction effects of the four models were evaluated. The results indicated that the prediction effect of the deep GRU model was the best and the prediction results of the RF model were the worst. Compared with the commonly used RF model, XGBoost model, and LSTM model, the GRU model based on deep learning could better predict PM2.5 and PM10 concentration.
  • [1]
    刘佳澍,顾远,马帅帅,等.常州夏冬季PM2.5中无机组分昼夜变化特征与来源解析[J].环境科学,2018,39(3):980-989.
    [2]
    段文娇,郎建垒,程水源,等.京津冀地区钢铁行业污染物排放清单及对PM2.5影响[J].环境科学,2018,39 (4):1445-1454.
    [3]
    余钟奇,瞿元昊,周广强,等.2018年秋冬季长江三角洲区域PM2.5污染来源数值研究[J].中国环境科学,2020,40(10):4237-4246.
    [4]
    黄小刚,邵天杰,赵景波,等.汾渭平原PM2.5浓度的影响因素及空间溢出效应[J].中国环境科学,2019,39(8):3539-3548.
    [5]
    黄小刚,邵天杰,赵景波,等.长江经济带空气质量的时空分布特征及影响因素[J].中国环境科学,2020,40(2):874-884.
    [6]
    陈波,李少宁,杨新兵,等.北京春季PM2.5和PM10污染水平及影响因素研究[J].内蒙古农业大学学报(自然科学版),2018,39(5):36-44.
    [7]
    肖悦,田永中,许文轩,等.近10年中国空气质量时空分布特征[J].生态环境学报,2017,26(2):243-252.
    [8]
    黄含含,王羽琴,李升苹,等.西安市PM2.5中水溶性离子的季节变化特征[J].环境科学,2020,41(6):2528-2535.
    [9]
    杨文涛,姚诗琪,邓敏,等.北京市PM2.5时空分布特征及其与PM10关系的时空变异特征[J].环境科学,2018,39(2):684-690.
    [10]
    赵雪,侯丽丽,王鑫龙,等.基于LUR模型的2019年北京地区PM2.5与PM10浓度空间分异模拟[J].环境科学学报,2020,40(11):4060-4069.
    [11]
    郭庆元,杨晓春,吴其重,等.基于数值模拟对西安地区冬季一次重污染过程PM2.5区域来源解析[J].环境科学学报,2020,40(9):3103-3111.
    [12]
    YU M F,ZHU Y,LIN C J,et al.Effects of air pollution control measures on air quality improvement in Guangzhou,China[J].Journal of Environmental Management,2019,244:127-137.
    [13]
    SHEN L,JACOB D J,MICKLEY L J,et al.Insignificant effect of climate change on winter haze pollution in Beijing [J].Atmospheric Chemistry and Physics,2018,18 (23):17489-17496.
    [14]
    李岚淼,李龙国,李乃稳.城市雾霾成因及危害研究进展[J].环境工程,2017,35(12):92-97

    ,104.
    [15]
    雷钦.大气细颗粒物PM2.5的危害及其治理策略[J].低碳世界,2020,10(11):23-24.
    [16]
    ERIC L,ISAC L,MARIANNE H,et al.Ambient ultrafine particle concentration and incidence of childhood cancers[J].Environment International,2020,145:106135.
    [17]
    SOURANGSU C,SAGNIK D,SMITH K R.Ambient PM2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios[J].Nature Communications,2018,9(1).
    [18]
    周广强,谢英,吴剑斌,等.基于WRF-Chem模式的华东区域PM2.5预报及偏差原因[J].中国环境科学,2016,36(8):2251-2259.
    [19]
    CHEN J J,LU J,AVISE J C,et al.Seasonal modeling of PM2.5 in California’s San Joaquin Valley[J].Atmospheric Environment,2014,92:182-190.
    [20]
    康俊锋,黄烈星,张春艳,等.多机器学习模型下逐小时PM2.5预测及对比分析[J].中国环境科学,2020,40(5):1895-1905.
    [21]
    DEUKWOO L,SOOWON L.Hourly prediction of particulate matter (PM2.5) concentration using time series data and random forest[J].KIPS Transactions on Software and Data Engineering,2020,9(4).
    [22]
    黄赫,周勇,刘宇杰,等.基于多源环境变量和随机森林的农用地土壤重金属源解析:以襄阳市襄州区为例[J].环境科学学报,2020,40(12):4548-4558.
    [23]
    史飞飞,周秉荣,颜亮东,等.近32年隆宝高寒湿地时空变化特征及其气候驱动力分析[J].高原气象,2020,39(6):1282-1294.
    [24]
    刘志壮,吕谋,周国升.基于小波组合模型的短期城市用水量预测[J].给水排水,2020,56(10):110-114

    ,131.
    [25]
    郭宇龙,李岚涛,陈伟强,等.基于红边光谱特征和XGBoost算法的冬小麦叶绿素浓度估算研究[J].红外,2020,41(11):33-43.
    [26]
    唐科,秦敏,赵星,等.基于Stacking集成学习模型的气态亚硝酸预测[J].中国环境科学,2020,40(2):582-590.
  • Relative Articles

    [1]HOU Yifan, LIU Lianhua, YANG Wenjin, LIAN Zhongmin. AN ANALYSIS OF RESEARCH TRENDS ABOUT PHTHALATE ESTERS POLLUTION IN AQUATIC ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 60-69. doi: 10.13205/j.hjgc.202407006
    [2]LI Zhanpeng, YUAN Huizhou, KE Shuizhou, YUAN Jiajia, ZHU Jia. EFFECTS OF DIMETHYL PHTHALATE ON VEGETATION-ACTIVATED SLUDGE PROCESS AND ITS REMOVAL PERFORMANCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 202-210. doi: 10.13205/j.hjgc.202212027
    [3]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [6]Wan Qing, Gao Guilan, Zhang Lin. DETERMINATION OF ACRYLONITRILE IN SOLID WASTE BY AUTOMATIC HEADSPACE GAS CHROMATOGRAPHY[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 140-142. doi: 10.13205/j.hjgc.201508032
    [7]DETERMINATION OF p-NITROPHENOL IN WATER SAMPLES BY CAPILLARY ZONE ELECTROPHORESIS-DIODE ARRAY DETECTOR[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 120-123. doi: 10.13205/j.hjgc.201412021
  • Cited by

    Periodical cited type(9)

    1. 朱会军,李菁华. QuEChERS方法在环境监测分析中的应用. 化工管理. 2021(33): 142-143 .
    2. 袁丽,刘彦爱,程金金,余向阳,朱宏,孙星. 上海青对土壤邻苯二甲酸二丁酯的富集及毒性响应特征. 江苏农业学报. 2019(01): 204-210 .
    3. 杨丹旎,王欣,吴凌,杨懿,尹烁,孙成均. 高效液相色谱法测定土壤和河底泥中的15种邻苯二甲酸酯. 现代预防医学. 2019(08): 1460-1463+1482 .
    4. 张悦,袁骐,蒋玫,郑亮,隋延鸣,王云龙,王翠华. 邻苯二甲酸酯类毒性及检测方法研究进展. 环境化学. 2019(05): 1035-1046 .
    5. 胡红美,李铁军,张露,郝青,孙秀梅,金衍健,应忠真,郭远明. 海洋沉积物中邻苯二甲酸酯类环境激素的测定及其生态风险评估. 浙江大学学报(农业与生命科学版). 2019(03): 365-375 .
    6. 王兴磊,李芳,刘云庆,周均,雷红琴,粟有志. 快速溶剂萃取/气相色谱-质谱联用法测定土壤中15种邻苯二甲酸酯类增塑剂. 环境化学. 2018(05): 1157-1164 .
    7. 巩子路,吴宏萍,薛锡佳,吴丽华,刘曼曼,韩旭. 白酒中塑化剂的来源及其检测方法研究进展. 酿酒. 2018(03): 16-20 .
    8. 张露,胡红美,刘奇鹰,李铁军,孙秀梅,郭远明,郝青,金衍健. 气质联用测定海洋沉积物中15种邻苯二甲酸酯的含量. 浙江海洋大学学报(自然科学版). 2018(01): 30-36 .
    9. 许蓉蓉. 气相色谱-质谱法检测邻苯二甲酸酯系统空白的探讨. 食品安全质量检测学报. 2017(12): 4609-4616 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 18.8 %FULLTEXT: 18.8 %META: 81.2 %META: 81.2 %FULLTEXTMETA
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.0 %其他: 16.0 %其他: 0.6 %其他: 0.6 %上海: 0.6 %上海: 0.6 %北京: 2.8 %北京: 2.8 %南京: 2.8 %南京: 2.8 %南通: 0.6 %南通: 0.6 %台州: 1.7 %台州: 1.7 %哈尔滨: 0.6 %哈尔滨: 0.6 %嘉兴: 0.6 %嘉兴: 0.6 %天津: 0.6 %天津: 0.6 %张家口: 0.6 %张家口: 0.6 %扬州: 0.6 %扬州: 0.6 %无锡: 1.7 %无锡: 1.7 %杭州: 1.7 %杭州: 1.7 %武汉: 0.6 %武汉: 0.6 %沈阳: 0.6 %沈阳: 0.6 %湖州: 1.7 %湖州: 1.7 %湘潭: 0.6 %湘潭: 0.6 %漯河: 1.7 %漯河: 1.7 %芒廷维尤: 52.5 %芒廷维尤: 52.5 %芝加哥: 2.2 %芝加哥: 2.2 %苏州: 0.6 %苏州: 0.6 %衢州: 1.1 %衢州: 1.1 %西宁: 4.4 %西宁: 4.4 %贵阳: 0.6 %贵阳: 0.6 %重庆: 0.6 %重庆: 0.6 %青岛: 1.7 %青岛: 1.7 %香港: 0.6 %香港: 0.6 %其他其他上海北京南京南通台州哈尔滨嘉兴天津张家口扬州无锡杭州武汉沈阳湖州湘潭漯河芒廷维尤芝加哥苏州衢州西宁贵阳重庆青岛香港

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (630) PDF downloads(25) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return