Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Ya-qiong, LIU Hong-bo, DIE Qing-qi, HUANG Qi-fei, YANG Yu-fei. PRESENT SITUATION AND COUNTERMEASURES OF WASTE SALT PRODUCTION, UTILIZATION AND DISPOSAL IN PESTICIDE INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 148-152. doi: 10.13205/j.hjgc.202112022
Citation: HUANG Quan-li, HUANG Kui, LU Yuan-huan, LIU Yu-ling, XIONG Hao, DONG Hai-li. RECOVERY OF IRON AND ALUMINUM FROM RED MUD BY OXALIC ACID LEACHING AND SOLAR PHOTOCATALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 199-205. doi: 10.13205/j.hjgc.202112030

RECOVERY OF IRON AND ALUMINUM FROM RED MUD BY OXALIC ACID LEACHING AND SOLAR PHOTOCATALYSIS

doi: 10.13205/j.hjgc.202112030
  • Received Date: 2020-11-10
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • The process of extraction of iron and aluminum from red mud by using oxalic acid leaching was investigated systematically. The effect of oxalic acid addition, leaching time, leaching temperature and liquid to solid ratio on the leaching efficiency were investigated respectively, and the response surface method was used to the optimize the preparation process based on the single-factor experiment results. The Fe(Ⅲ) oxalate in the leaching solution was reduced to Fe(Ⅱ) oxalate by using sunlight irradiation. The experiment results showed that the regression equation model was of great significant. The optimized processing conditions for leaching rate were as follows: the oxalic acid concentration of 0.30 g/mL, the liquid-solid ratio of 14∶1, reaction temperature of 95 ℃, reaction time of 150 min. Under the optimal conditions, the leaching rates of iron and aluminum were up to 87.76% and 74.60%, respectively. The total iron concentration decreased from 1.152 g/L to 0.173 g/L in the extracted solution, and more than 85% Fe(Ⅲ) oxalate was transformed into the Fe(Ⅱ) oxalate crystallite within 420 min by using sunlight irradiation. The aluminum and oxalic acid in the filtrate could be recovered by means of adjusting pH value, filtration, and evaporation crystallization successively. The study provides new technical routine for the recovery of iron and aluminum from red mud.
  • [1]
    张利祥,高一强,黄建洪,等.赤泥资源化综合利用研究进展[J].硅酸盐通报,2020,39(1):144-149.
    [2]
    LIU W C,YANG J K,XIAO B.Review on treatment and utilization of bauxite residues in China[J].International Journal of Mineral Processing,2009,93(3/4):220-231.
    [3]
    YU F Q,LIN H F,WANG C,et al.Recovery of Fe and Al from red mud by a novel fractional precipitation process[J].Environmental Science and Pollution Research,2020,27(13):14642-14653.
    [4]
    薛生国,李玉冰,郭颖.氧化铝工业赤泥环境影响研究进展[J].中国科学院大学学报,2017,34(4):401-412.
    [5]
    赵琳,刘含笑,陈招妹,等.氧化铝赤泥的产生、危害及处置方式初探[C]//环境工程2018年全国学术年会,2018.
    [6]
    滕春英,周康根,宁凌峰,等.盐酸分级浸出赤泥中有价金属元素[J].环境工程学报,2018,12(1):310-315.
    [7]
    AGRAWAL S,RAYAPUDI V,DHAWAN N.Extraction of Iron values from red mud[J].Materials Today:Proceedings,2018,5(9):17064-17072.
    [8]
    ZHU D Q,CHUN T J,PAN J,et al.Recovery of iron from high-iron red mud by reduction roasting with adding sodium salt[J].Journal of Iron and Steel Research International,2012,19(8):1-5.
    [9]
    谢天鉴,谢克强,刘俊场,等.拜耳法赤泥回收有价金属试验研究[J].云南冶金,2020,49(3):68-72.
    [10]
    吴烈善,苏翠翠,吕宏虹,等.赤泥酸浸出铁、铝的工艺条件研究及其表征[J].工业安全与环保,2014,40(12):71-74.
    [11]
    高燕.广西平果铝厂赤泥两段酸浸铝铁工艺研究[D].太原:太原理工大学,2014.
    [12]
    刘付朋,刘志宏,李玉虎,等.锌粉置换镓锗渣草酸浸出过程[J].中国有色金属学报,2017,27(10):2154-2163.
    [13]
    BISWAS S,CHAKRABORTY S,CHAUDHURI M G,et al.Optimization of process parameters anddissolution kinetics of nickel and cobalt fromlateritic chromite overburden using organic acids[J].Journal of Chemical Technology & Biotechnology,2014,89(10):1491-1500.
    [14]
    HU P C,ZHANG Y M,LIU T,et al.Separation and recovery of iron impurity from a vanadium-bearing stone coal via an oxalic acid leaching-reduction precipitation process[J].Separation & Purification Technology,2017,180:99-106.
    [15]
    AMBIKADEVI V R,LALITHAMBIKA M.Effect of organic acids on ferric iron removal from iron-stained kaolinite[J].Applied Clay Science,2000,16(3):133-145.
    [16]
    YU Z L,SHI Z X,CHEN Y M,et al.Red-mud treatment using oxalic acid by UV irradiation assistance[J].Transactions of Nonferrous Metals Society of China,2012,22(2):456-460.
    [17]
    YANG Y,WANG X Y,WANG M Y,et al.Recovery of iron from red mud by selective leach with oxalic acid[J].Hydrometallurgy.2015,157:239-245.
    [18]
    徐丽.太阳光下天然铁砂非均相FENTON反应降解染料废水的研究[D].秦皇岛:燕山大学,2012.
    [19]
    POZDNYAKOV I P,KEL O V,PLYUSNIN V F,et al.New insight into photochemistry of ferrioxalate[J].The Journal of Physical Chemistry A,2008,112(36):8316-8322.
    [20]
    MONTEAGUDO J M,DURÁN A,AGUIRRE M,et al.Optimization of the mineralization of a mixture of phenolic pollutants under a ferrioxalate-induced solar photo-Fenton process[J].Journal of Hazardous Materials,2011,185(1):131-139.
    [21]
    KATSUMATA H,OKADA T,KANECO S,et al.Degradation of fenitrothion by ultrasound/ferrioxalate/UV system[J].Ultrasonics Sonochemistry,2010,17(1):200-206.
    [22]
    郝帅,李诚,席艺慧,等.拜耳法赤泥中钪的两步盐酸浸出工艺研究[J].环境工程,39(1):136-141,200.
    [23]
    YANG Y,WANG X Y,WANG M Y,et al.Iron recovery from the leached solution of red mud through the application of oxalic acid[J].International Journal of Mineral Processing,2016,157:145-151.
    [24]
    PRATO-Garcia D,VASQUEZ-Medrano R,HERNANDEZ-ESPARZA M.Solar photoassisted advanced oxidation of synthetic phenolic wastewaters using ferrioxalate complexes[J].Solar Energy,2009,83(3):306-315.
  • Relative Articles

    [1]CUI Ruoqi, CHE Xiangqian, LU Zhen, LI Yingnan, WANG Pan, REN Lianhai. EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 204-211. doi: 10.13205/j.hjgc.202404024
    [2]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [3]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [4]DU Ying'en, HOU Jingming, CHAI Jie, BAI Guangbi, LI Xuan, ZHANG Hongfang, ZHANG Zhaoan, CHEN Guangzhao, LI Bingyao. TEMPORAL VARIATION CHARACTERISTICS OF PRECIPITATION EXTREMES IN XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 41-46. doi: 10.13205/j.hjgc.202211006
    [5]XIAO Han, HAN Zhi-wei, XIONG Jia, LUO Guang-fei, TIAN Yu-tong, YANG Miao. BIOAVAILABILITY AND ECOLOGICAL RISK ASSESSMENT OF Sb AND As IN TAILINGS OF QINGLONG ANTIMONY MINE IN GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 123-132. doi: 10.13205/j.hjgc.202205018
    [6]JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027
    [7]SUN Tian-zi, WANG Pan, CHEN Xi-teng, CAI Yu-xiao, REN Lian-hai, LV Zheng. EFFECT OF LIQUID BACTERIAL FERTILIZER PREPARED BY BIOGAS SLURRY FROM FOOD WASTE DIGESTING ON PHYSICAL AND CHEMICAL PROPERTIES OF FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 201-206. doi: 10.13205/j.hjgc.202008033
    [8]ZHOU Li-jun, LIN Xiao-bing, WU Lin, HUANG Qian-ru, YU Ying, ZHANG Hong-yan, GUO Nai-jia, ZHANG Yun, LIU Hui. DIFFERENCES ANALYSIS ON PHYSICOCHEMICAL PROPERTITES,MICROBIAL AND ENZYME ACTIVITIES OF CADMIUM CONTAMINATED PADDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 202-206,227. doi: 10.13205/j.hjgc.202010032
    [18]Xu Xin Cui Xiaoai, . STUDY ON SPATIOTEMPORAL EVOLUTION OF ENVIRONMENTAL EFFICIENCY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 127-131. doi: 10.13205/j.hjgc.201508029
    [19]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [20]Lu Sufen, Song Bo, Meng Dongliu, Yu Yuanyuan, Huang Yufei, Yuan Zhennan, Zhong Xuemei. HEAVY METAL CONTENTS IN SOIL AND VEGETABLES OF A TAILING SPILL IN HUANJIANG AND HUMAN HEALTH RISKS ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 130-134. doi: 10.13205/j.hjgc.201510029
  • Cited by

    Periodical cited type(18)

    1. 颜渝森,王健,范例,宾灯辉,蔡洪英,龚先河,甘伟,袁胜. 工业副产盐再利用环境风险评价研究. 环境影响评价. 2025(01): 76-83+89 .
    2. 李明辉,许高洁,宁朋歌. 工业废盐处理及资源化利用进展. 当代化工研究. 2025(01): 10-13 .
    3. 陈诺. 吡虫啉农药废盐中有机物的去除——溶剂萃取法. 四川环境. 2025(01): 131-137 .
    4. 李勇,汤晓娟. 草甘膦制造时母液产排节点及治理技术研究. 山西化工. 2024(01): 123-125+129 .
    5. 庞亚恒,李星宇. 偶氮二氰基戊酸副产废盐热处理工艺研究. 煤炭与化工. 2024(02): 157-160 .
    6. 王燕华,钟晶晶,张文辉. 国内典型行业产生的工业废盐特征污染物分析及综合利用环境安全性研究. 皮革制作与环保科技. 2024(15): 90-93 .
    7. 周哲,崔咪芬,陈献,于瑞兵,徐希化,齐敏,汤吉海,乔旭. 农药氟虫腈与钛白粉副产盐资源化生产电池用磷酸铁工艺. 高校化学工程学报. 2024(05): 762-769 .
    8. 袁定琨,李文健,周一帆,杜航,江子越,林法伟. 制药行业废盐的热处理研究进展及展望. 现代化工. 2024(12): 29-33+38 .
    9. 罗超,吴凯凯,邓雅清. 工业废盐资源化处理技术及工程应用. 盐科学与化工. 2024(12): 6-10 .
    10. 霍慧敏,王年禧,何艺,黄文平,张海东,郑洋,李静,刘研萍,韦洪莲. 我国化工废盐资源化利用产品标准体系建设分析. 环境工程学报. 2024(11): 3139-3148 .
    11. 张森,王军,陈天虎,董仕伟,徐亮,李雅倩,赵月领. 农药行业NaCl-KCl型废盐热处理研究. 无机盐工业. 2023(02): 106-112 .
    12. 翟增秀,肖咸德,孟洁,王静,杨伟华,李伟芳. 典型农药制造企业废气污染物排放特征及风险评估. 环境科学. 2023(02): 730-739 .
    13. 李俊,刘小文,周兆安,毛谙章. 含铜污泥还原熔炼协同处理工业废盐工艺研究. 湖南有色金属. 2023(02): 28-30+53 .
    14. 郝雅琼,黄泽春,黄启飞,杨玉飞. 甘氨酸法生产草甘膦过程中母液产排节点与治理分析. 环境科学研究. 2023(06): 1210-1217 .
    15. 蒋太波. 废盐资源化及热化学处理技术的应用探讨. 四川化工. 2022(01): 55-58 .
    16. 熊言开,闫纪宪,王逵. 农药制造行业常见农药产品危险废物产生和污染特性研究. 山东化工. 2022(13): 212-216 .
    17. 张鹏,潘琦,彭莉,田伟,冉林杰,刘雪. 工业废盐处理处置现状及趋势. 环境卫生工程. 2022(05): 67-71+82 .
    18. 迭庆杞,黄泽春,杨玉飞,黄启飞,郝雅琼. 我国农药工业危险废物产生和污染特性研究. 环境工程技术学报. 2021(06): 1266-1272 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 83.4 %META: 83.4 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.9 %其他: 23.9 %其他: 0.9 %其他: 0.9 %China: 0.2 %China: 0.2 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.7 %Hollywood: 0.7 %Malvern: 0.5 %Malvern: 0.5 %Twinsburg: 0.2 %Twinsburg: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.6 %上海: 1.6 %东莞: 1.6 %东莞: 1.6 %中卫: 0.2 %中卫: 0.2 %临汾: 0.2 %临汾: 0.2 %休斯敦: 1.1 %休斯敦: 1.1 %休斯顿: 0.2 %休斯顿: 0.2 %信阳: 0.2 %信阳: 0.2 %兰开斯特: 0.2 %兰开斯特: 0.2 %北京: 8.0 %北京: 8.0 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.5 %南昌: 0.5 %厦门: 0.9 %厦门: 0.9 %天津: 0.5 %天津: 0.5 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.5 %密蘇里城: 0.5 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.2 %巴黎: 0.2 %常州: 1.1 %常州: 1.1 %常德: 0.2 %常德: 0.2 %广州: 1.6 %广州: 1.6 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.7 %张家口: 0.7 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %新乡: 0.5 %新乡: 0.5 %无锡: 0.5 %无锡: 0.5 %昆明: 0.9 %昆明: 0.9 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.1 %杭州: 1.1 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.5 %济南: 0.5 %济宁: 0.2 %济宁: 0.2 %济源: 0.5 %济源: 0.5 %湖州: 0.7 %湖州: 0.7 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.5 %潍坊: 0.5 %珠海: 0.7 %珠海: 0.7 %瑟普赖斯: 0.2 %瑟普赖斯: 0.2 %盐城: 0.7 %盐城: 0.7 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %纽瓦克: 0.2 %纽瓦克: 0.2 %纽约: 0.5 %纽约: 0.5 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 29.5 %芒廷维尤: 29.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.7 %莫斯科: 0.7 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衢州: 0.2 %衢州: 0.2 %西双版纳傣族自治州: 0.5 %西双版纳傣族自治州: 0.5 %西宁: 0.2 %西宁: 0.2 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.6 %运城: 1.6 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.6 %郑州: 1.6 %重庆: 1.1 %重庆: 1.1 %金曼: 0.2 %金曼: 0.2 %银川: 0.2 %银川: 0.2 %锦州: 0.5 %锦州: 0.5 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %黑格斯敦: 0.2 %黑格斯敦: 0.2 %其他其他ChinaGwynn OakHollywoodMalvernTwinsburg[]上海东莞中卫临汾休斯敦休斯顿信阳兰开斯特北京匹兹堡十堰南京南昌厦门天津宣城密蘇里城巴音郭楞巴黎常州常德广州弗吉张家口成都扬州新乡无锡昆明晋城朝阳杭州格兰特县武汉沈阳济南济宁济源湖州漯河潍坊珠海瑟普赖斯盐城石家庄福州纽瓦克纽约绵阳芒廷维尤芝加哥苏州莫斯科蒙特利尔衢州西双版纳傣族自治州西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆金曼银川锦州长沙长治青岛黑格斯敦

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (310) PDF downloads(3) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return