Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAO Ya-qiong, LIU Hong-bo, DIE Qing-qi, HUANG Qi-fei, YANG Yu-fei. PRESENT SITUATION AND COUNTERMEASURES OF WASTE SALT PRODUCTION, UTILIZATION AND DISPOSAL IN PESTICIDE INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 148-152. doi: 10.13205/j.hjgc.202112022
Citation: JIANG Xu-sheng, LIU Jie, LI Hai-xiang, WU Fu, ZHU Zhen, LI Xiang-min. VEGETATION RESTORATION AND SUBSTRATE AMENDMENT OF A RECLAIMED LEAD-ZINC MINE TAILINGS POND[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 220-226. doi: 10.13205/j.hjgc.202112033

VEGETATION RESTORATION AND SUBSTRATE AMENDMENT OF A RECLAIMED LEAD-ZINC MINE TAILINGS POND

doi: 10.13205/j.hjgc.202112033
  • Received Date: 2020-12-17
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • For the purpose of studying the in-situ plant restoration effect of ecological restoration on lead/zinc mine tailings pond, the comprehensive treatment demonstration project of tailing reservoir in Yangshuo lead zinc mine was chosen as the study object, to investigate and analyze the tails physical-chemical properties, heavy metals and enzyme activity in three reclamation years, and vegetation restoration and the growth of new plants were observed on-site for 3 consecutive years(2018—2020). The results showed that the artificially planted Miscanthus sinensis and Pueraria phaseoloides, two tolerant plants in the tailings bank, could stabilize the heavy metals in the tailings. The newly added species of vegetation in the reservoir area increased year by year, mainly Fabaceae and Asteraceae; catalase, urease and the phosphatase activity first increased and then decreased, the invertase activity increased significantly; the fertility and fertilizer retention capacity of tailings were improved and the total nitrogen content of tailings increased from 1.14 g/kg to 2.19 g/kg. The organic carbon content increased from 9.50 g/kg to 21.01 g/kg. This showed that in the ecological restoration of mine wasteland with similar natural conditions, the target plants from Pueraria and Artemisia should be selected; vegetation restoration would accelerate the secondary succession of plant communities in the tailings reservoir area; the artificial vegetation restoration of the lead-zinc mine tailings reservoir could accelerate the evolution of the tailings substrate, promote the restoration of ecosystem and maintain its well-ordered ecological cycle.
  • [1]
    TANG L,LIU X M,WANG X Q,et al.Statistical analysis of tailings ponds in china[J].Journal of Geochemical Exploration,2020,216:0375-6742.
    [2]
    CHEN X M,JI H B,WEN Y,et al.Speciation and distribution of mercury in soils around gold mines located upstream of Miyun Reservoir,Beijing,China[J].Journal of Geochemical Exploration,2016,163:1-9.
    [3]
    EPOV M I,YURKEVICH N V,et al.Analysis of mine waste by geocheimical and geophysical methods (a case study of the mine tailing dump of the Salair ore-processing plant)[J].Russian Geology and Geophysics,2017,58(12):1543-1552.
    [4]
    GUO F,WU F C,YU F,et al.Fate and removal of antimony in response to stringent control activities after a mine tailing spill[J].Science of the Total Environment,2019,693:133604.
    [5]
    CÁNOVAS C R,CARO-MORENO D,JIMENEZ-CANTIZANO F A,et al.Assessing the quality of potentially reclaimed mine soils:Environmental implications for the construction of a nearby water reservoir[J].Chemosphere,2019,216:19-30.
    [6]
    CAO X X,ZHOU S Q,XIE F,et al.The distribution of rare earth elements and sources in maoshitou reservoir affected by acid mine drainage,southwest china[J].Journal of Geochemical Exploration,2019,202:92-99.
    [7]
    VANESSA G,MICHAËL R,ANTOINE T,et al.Differences in elemental composition of tailings,soils,and plant tissues following five decades of native plant colonization on a gold mine site in northwestern québec[J].Chemosphere,2020,250:126243.
    [8]
    张云霞,宋波,杨子杰,等.广西某铅锌矿影响区农田土壤重金属污染特征及修复策略[J].农业环境科学学报,2018,37(2):239-249.
    [9]
    张海星,姚丽文,熊报国,等.德兴铜矿1号尾矿库废弃土地生态恢复试验研究[J].环境与开发,1999,14(1):10-11

    ,45.
    [10]
    赵元艺,于宝洵,初娜,等.矿床地质环境模型及其在江西德兴铜矿中的应用[J].地质通报,2009,28(1):99-117.
    [11]
    王振生,赵岩.土壤改良技术在重金属矿山尾矿库环境治理中的应用探讨[J].科技创新导报,2017,14(9):126-128.
    [12]
    HOSSEIN K,ALI A,SILVIA M,et al.Provenance and environmental risk of windblown materials from mine tailing ponds,murcia,spain[J].Environmental Pollution,2018,(241):432-440.
    [13]
    彭东海,侯晓龙,何宗明,等.金尾矿废弃地不同植被恢复模式对土壤理化性质的影响[J].水土保持学报,2015,29(6):137-142.
    [14]
    MA Y J,WANG Y T,CHEN Q,et al.Assessment of heavy metal pollution and the effect on bacterial community in acidic and neutral soils[J].Ecological Indicators,2020,117:106626.
    [15]
    WANG X,CUI Y X,ZHANG X C,et al.A novel extracellular enzyme stoichiometry method to evaluate soil heavy metal contamination:evidence derived from microbial metabolic limitation[J].Science of the Total Environment,2020,738:139709.
    [16]
    栾云霞,李伟国,陆安祥,等.原子荧光光谱法同时测定土壤中的砷和汞[J].安徽农业科学,2009,37(12):5344-5346.
    [17]
    韩洋,乔冬梅,齐学斌,等.草酸对镉污染土壤油葵生物量及土壤酶活性和镉形态的影响[J].农业环境科学学报,2020,39(9):1964-1973.
    [18]
    吴道铭,陈晓阳,曾曙才.芒属植物重金属耐性及其在矿山废弃地植被恢复中的应用潜力[J].应用生态学报,2017,28(4):1397-1406.
    [19]
    李影,陈明林.节节草生长对铜尾矿砂重金属形态转化和土壤酶活性的影响[J].生态学报,2010,30(21):5949-5957.
    [20]
    李晓莹,徐学华,郭江,等.不同造林树种对铁尾矿基质理化性质和土壤动物的影响[J].生态学报,2014,34(20):5746-5757.
    [21]
    GÖTZENBERGER L,DE B F,BRÅTHEN K A,et al.Ecological assembly rules in plant communities—approaches,patterns and prospects[J].Biological Reviews of the Cambridge Philosophical Society,2012,87(1):111-127.
    [22]
    韩路,王海珍,彭杰,等.塔里木荒漠河岸林植物群落演替下的土壤理化性质研究[J].生态环境学报,2010,19(12):2808-2814.
    [23]
    OBBARD,J P,JONES,K C.Measurement of symbiotic nitrogenfixation in leguminous host-plants grown in heavy metal-contaminated soils amended with sewage sludge[J].Environmental Pollution,2001,111(2):311-320.
    [24]
    李若愚,侯明明,卿华,等.矿山废弃地生态恢复研究进展[J].矿产保护与利用,2007(1):50-54.
    [25]
    张瑞海,宋振,付卫东,等.植被恢复对刺萼龙葵根际土壤细菌群落结构与功能的影响[J/OL].环境科学,2020:1-19.https://doi.org/10.13227

    /j.hjkx.202006285.
    [26]
    SAPKOTA R P,STAHL P D,RIJAL K.Restoration governance:an integrated approach towards sustainably restoring degraded ecosystems[J].Environmental Development,2018,27:83-94.
    [27]
    赵平.退化生态系统植被恢复的生理生态学研究进展[J].应用生态学报,2003,14(11):2031-2036.
    [28]
    朱佳文,邹冬生,向言词,等.先锋植物对铅锌尾矿库重金属污染的修复作用[J].水土保持学报,2011,25(6):207-210.
    [29]
    王理德,王方琳,郭春秀,等.土壤酶学研究进展[J].土壤,2016(1):12-21.
    [30]
    刘善江,夏雪,陈桂梅,等.土壤酶的研究进展[J].中国农学通报,2011,27(21):1-7.
    [31]
    曹慧,孙辉,杨浩,等.土壤酶活性及其对土壤质量的指示研究进展[J].应用与环境生物学报,2003,9(1):105-109.
    [32]
    PIOTR G,JAN M.Tree species affect cation exchange capacity (cec) and cation binding properties of organic matter in acid forest soils[J].Science of the Total Environment,2015(511):655-662.
  • Relative Articles

    [1]CUI Ruoqi, CHE Xiangqian, LU Zhen, LI Yingnan, WANG Pan, REN Lianhai. EFFECT OF HYDROTHERMAL TREATMENT ON DEGREASING PROPERTY AND PHYSICAL AND CHEMICAL PROPERTIES OF FOOD WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 204-211. doi: 10.13205/j.hjgc.202404024
    [2]MAO Xinyu, ZHAI Senmao, JIANG Xiaosan, SUN Jingjing, YU Huaizhi. EFFECT OF MODIFIED BIOCHAR ON PHYSICO-CHEMICAL PROPERTIES OF FARMLAND SOIL AND IMMOBILIZATION OF Pb AND Cd AND THE MECHANISMS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 113-121,139. doi: 10.13205/j.hjgc.202302016
    [3]PANG Bo, YANG Wenxin, CUI Baoshan, ZHANG Shuyan, XIE Tian, NING Zhonghua, GAO Fang, ZHANG Hongshan. EVALUATION OF THE EFFECT OF VEGETATION RESTORATION IN THE YELLOW RIVER DELTA WETLAND BIODIVERSITY CONSERVATION PROJECT[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 213-221. doi: 10.13205/j.hjgc.202301026
    [4]DU Ying'en, HOU Jingming, CHAI Jie, BAI Guangbi, LI Xuan, ZHANG Hongfang, ZHANG Zhaoan, CHEN Guangzhao, LI Bingyao. TEMPORAL VARIATION CHARACTERISTICS OF PRECIPITATION EXTREMES IN XI'AN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 41-46. doi: 10.13205/j.hjgc.202211006
    [5]XIAO Han, HAN Zhi-wei, XIONG Jia, LUO Guang-fei, TIAN Yu-tong, YANG Miao. BIOAVAILABILITY AND ECOLOGICAL RISK ASSESSMENT OF Sb AND As IN TAILINGS OF QINGLONG ANTIMONY MINE IN GUIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 123-132. doi: 10.13205/j.hjgc.202205018
    [6]JIA Lin, ZHANG Jin-long, LIU Lu-yao, WANG Peng-shan, MI Hong-lei, LI Zhi-ming, TIAN Xiao-ming, WANG Guo-qiang. VARIATION CHARACTERISTICS OF VEGETATION RESTORATION AND SOIL PHYSICAL AND CHEMICAL PROPERTIES OF DIFFERENT RECLAMATION YEARS IN TIANJIN COASTAL AREA[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 179-186,159. doi: 10.13205/j.hjgc.202106027
    [7]SUN Tian-zi, WANG Pan, CHEN Xi-teng, CAI Yu-xiao, REN Lian-hai, LV Zheng. EFFECT OF LIQUID BACTERIAL FERTILIZER PREPARED BY BIOGAS SLURRY FROM FOOD WASTE DIGESTING ON PHYSICAL AND CHEMICAL PROPERTIES OF FARMLAND SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 201-206. doi: 10.13205/j.hjgc.202008033
    [8]ZHOU Li-jun, LIN Xiao-bing, WU Lin, HUANG Qian-ru, YU Ying, ZHANG Hong-yan, GUO Nai-jia, ZHANG Yun, LIU Hui. DIFFERENCES ANALYSIS ON PHYSICOCHEMICAL PROPERTITES,MICROBIAL AND ENZYME ACTIVITIES OF CADMIUM CONTAMINATED PADDY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 202-206,227. doi: 10.13205/j.hjgc.202010032
    [18]Xu Xin Cui Xiaoai, . STUDY ON SPATIOTEMPORAL EVOLUTION OF ENVIRONMENTAL EFFICIENCY IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(8): 127-131. doi: 10.13205/j.hjgc.201508029
    [19]Zhang Hongzhong, Huo Jing, Ma Chuang, Zhao Jihong, Liu Huanjia. THE PROGRESS OF RESEACH ON THE APPLICATION OF URBAN SLUDGE COMPOST FOR LAWN SUBSTRATE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 92-95. doi: 10.13205/j.hjgc.201502020
    [20]Lu Sufen, Song Bo, Meng Dongliu, Yu Yuanyuan, Huang Yufei, Yuan Zhennan, Zhong Xuemei. HEAVY METAL CONTENTS IN SOIL AND VEGETABLES OF A TAILING SPILL IN HUANJIANG AND HUMAN HEALTH RISKS ASSESSMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(10): 130-134. doi: 10.13205/j.hjgc.201510029
  • Cited by

    Periodical cited type(18)

    1. 颜渝森,王健,范例,宾灯辉,蔡洪英,龚先河,甘伟,袁胜. 工业副产盐再利用环境风险评价研究. 环境影响评价. 2025(01): 76-83+89 .
    2. 李明辉,许高洁,宁朋歌. 工业废盐处理及资源化利用进展. 当代化工研究. 2025(01): 10-13 .
    3. 陈诺. 吡虫啉农药废盐中有机物的去除——溶剂萃取法. 四川环境. 2025(01): 131-137 .
    4. 李勇,汤晓娟. 草甘膦制造时母液产排节点及治理技术研究. 山西化工. 2024(01): 123-125+129 .
    5. 庞亚恒,李星宇. 偶氮二氰基戊酸副产废盐热处理工艺研究. 煤炭与化工. 2024(02): 157-160 .
    6. 王燕华,钟晶晶,张文辉. 国内典型行业产生的工业废盐特征污染物分析及综合利用环境安全性研究. 皮革制作与环保科技. 2024(15): 90-93 .
    7. 周哲,崔咪芬,陈献,于瑞兵,徐希化,齐敏,汤吉海,乔旭. 农药氟虫腈与钛白粉副产盐资源化生产电池用磷酸铁工艺. 高校化学工程学报. 2024(05): 762-769 .
    8. 袁定琨,李文健,周一帆,杜航,江子越,林法伟. 制药行业废盐的热处理研究进展及展望. 现代化工. 2024(12): 29-33+38 .
    9. 罗超,吴凯凯,邓雅清. 工业废盐资源化处理技术及工程应用. 盐科学与化工. 2024(12): 6-10 .
    10. 霍慧敏,王年禧,何艺,黄文平,张海东,郑洋,李静,刘研萍,韦洪莲. 我国化工废盐资源化利用产品标准体系建设分析. 环境工程学报. 2024(11): 3139-3148 .
    11. 张森,王军,陈天虎,董仕伟,徐亮,李雅倩,赵月领. 农药行业NaCl-KCl型废盐热处理研究. 无机盐工业. 2023(02): 106-112 .
    12. 翟增秀,肖咸德,孟洁,王静,杨伟华,李伟芳. 典型农药制造企业废气污染物排放特征及风险评估. 环境科学. 2023(02): 730-739 .
    13. 李俊,刘小文,周兆安,毛谙章. 含铜污泥还原熔炼协同处理工业废盐工艺研究. 湖南有色金属. 2023(02): 28-30+53 .
    14. 郝雅琼,黄泽春,黄启飞,杨玉飞. 甘氨酸法生产草甘膦过程中母液产排节点与治理分析. 环境科学研究. 2023(06): 1210-1217 .
    15. 蒋太波. 废盐资源化及热化学处理技术的应用探讨. 四川化工. 2022(01): 55-58 .
    16. 熊言开,闫纪宪,王逵. 农药制造行业常见农药产品危险废物产生和污染特性研究. 山东化工. 2022(13): 212-216 .
    17. 张鹏,潘琦,彭莉,田伟,冉林杰,刘雪. 工业废盐处理处置现状及趋势. 环境卫生工程. 2022(05): 67-71+82 .
    18. 迭庆杞,黄泽春,杨玉飞,黄启飞,郝雅琼. 我国农药工业危险废物产生和污染特性研究. 环境工程技术学报. 2021(06): 1266-1272 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.8 %FULLTEXT: 14.8 %META: 83.4 %META: 83.4 %PDF: 1.8 %PDF: 1.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 23.9 %其他: 23.9 %其他: 0.9 %其他: 0.9 %China: 0.2 %China: 0.2 %Gwynn Oak: 0.5 %Gwynn Oak: 0.5 %Hollywood: 0.7 %Hollywood: 0.7 %Malvern: 0.5 %Malvern: 0.5 %Twinsburg: 0.2 %Twinsburg: 0.2 %[]: 0.5 %[]: 0.5 %上海: 1.6 %上海: 1.6 %东莞: 1.6 %东莞: 1.6 %中卫: 0.2 %中卫: 0.2 %临汾: 0.2 %临汾: 0.2 %休斯敦: 1.1 %休斯敦: 1.1 %休斯顿: 0.2 %休斯顿: 0.2 %信阳: 0.2 %信阳: 0.2 %兰开斯特: 0.2 %兰开斯特: 0.2 %北京: 8.0 %北京: 8.0 %匹兹堡: 0.2 %匹兹堡: 0.2 %十堰: 0.2 %十堰: 0.2 %南京: 0.2 %南京: 0.2 %南昌: 0.5 %南昌: 0.5 %厦门: 0.9 %厦门: 0.9 %天津: 0.5 %天津: 0.5 %宣城: 0.2 %宣城: 0.2 %密蘇里城: 0.5 %密蘇里城: 0.5 %巴音郭楞: 0.2 %巴音郭楞: 0.2 %巴黎: 0.2 %巴黎: 0.2 %常州: 1.1 %常州: 1.1 %常德: 0.2 %常德: 0.2 %广州: 1.6 %广州: 1.6 %弗吉: 0.2 %弗吉: 0.2 %张家口: 0.7 %张家口: 0.7 %成都: 0.7 %成都: 0.7 %扬州: 0.7 %扬州: 0.7 %新乡: 0.5 %新乡: 0.5 %无锡: 0.5 %无锡: 0.5 %昆明: 0.9 %昆明: 0.9 %晋城: 0.7 %晋城: 0.7 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.1 %杭州: 1.1 %格兰特县: 0.2 %格兰特县: 0.2 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.5 %沈阳: 0.5 %济南: 0.5 %济南: 0.5 %济宁: 0.2 %济宁: 0.2 %济源: 0.5 %济源: 0.5 %湖州: 0.7 %湖州: 0.7 %漯河: 0.2 %漯河: 0.2 %潍坊: 0.5 %潍坊: 0.5 %珠海: 0.7 %珠海: 0.7 %瑟普赖斯: 0.2 %瑟普赖斯: 0.2 %盐城: 0.7 %盐城: 0.7 %石家庄: 0.2 %石家庄: 0.2 %福州: 0.2 %福州: 0.2 %纽瓦克: 0.2 %纽瓦克: 0.2 %纽约: 0.5 %纽约: 0.5 %绵阳: 0.7 %绵阳: 0.7 %芒廷维尤: 29.5 %芒廷维尤: 29.5 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.5 %苏州: 0.5 %莫斯科: 0.7 %莫斯科: 0.7 %蒙特利尔: 0.2 %蒙特利尔: 0.2 %衢州: 0.2 %衢州: 0.2 %西双版纳傣族自治州: 0.5 %西双版纳傣族自治州: 0.5 %西宁: 0.2 %西宁: 0.2 %西安: 0.2 %西安: 0.2 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.5 %贵阳: 0.5 %运城: 1.6 %运城: 1.6 %连云港: 0.2 %连云港: 0.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.2 %邯郸: 0.2 %郑州: 1.6 %郑州: 1.6 %重庆: 1.1 %重庆: 1.1 %金曼: 0.2 %金曼: 0.2 %银川: 0.2 %银川: 0.2 %锦州: 0.5 %锦州: 0.5 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %青岛: 0.2 %青岛: 0.2 %黑格斯敦: 0.2 %黑格斯敦: 0.2 %其他其他ChinaGwynn OakHollywoodMalvernTwinsburg[]上海东莞中卫临汾休斯敦休斯顿信阳兰开斯特北京匹兹堡十堰南京南昌厦门天津宣城密蘇里城巴音郭楞巴黎常州常德广州弗吉张家口成都扬州新乡无锡昆明晋城朝阳杭州格兰特县武汉沈阳济南济宁济源湖州漯河潍坊珠海瑟普赖斯盐城石家庄福州纽瓦克纽约绵阳芒廷维尤芝加哥苏州莫斯科蒙特利尔衢州西双版纳傣族自治州西宁西安西雅图贵阳运城连云港遵义邯郸郑州重庆金曼银川锦州长沙长治青岛黑格斯敦

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (284) PDF downloads(2) Cited by(21)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return