Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 39 Issue 12
Mar.  2022
Turn off MathJax
Article Contents
GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035
Citation: GUO Yue-hong, WANG Jian-sheng, ZHANG Xue-hong, ZHANG Xing-feng, GAO Bo. EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(12): 234-242. doi: 10.13205/j.hjgc.202112035

EFFECTS OF HUMIC ACID ON CHROMIUM SPECIATION, MICROBIAL COMMUNITIES AND ENZYME ACTIVITIES IN RED SOIL TREATMENT SYSTEM PLANTED WITH LEERSIA HEXANDRA SWARTZ

doi: 10.13205/j.hjgc.202112035
  • Received Date: 2021-01-27
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • The changes of chromium speciation, microbial communities and enzyme activities in red soil treatment system planted with Leersia hexandra Swartz with or without 10 g/kg humic acid were studied. The results showed that residual fraction was dominant in the substrate after humic acid added. The residual fraction was dominant in the stem and leaves while the hydrochloric acid fraction was dominant in the root. The number of bacteria, fungi and actinomycete could be significantly promoted by humic acid, and the maximum number of the three microbial groups was 6.76×107, 4.48×107, 7.71×107 CFU/g. The analysis of enzyme activities showed that humic acid increased the activity of invertase and alkaline phosphatase and decreased the activity of catalase and polyphenol oxidase. The correlation analysis showed that the activities of polyphenol oxidase and catalase were negatively correlated with the number of bacteria and the concentration of humic acid. The number of bacteria, fungi and actinomycetes was positively correlated with the concentration of humic acid. The number of bacteria, fungi and actinomyces were positively correlated with the content of chromium in the substrate residual fraction. A negative correlation existed between invertase and the content of chromium fractions in substrate and in Leersia hexandra Swartz. There was a positive correlation between the activity of polyphenol oxidase and most chromium fractions in Leersia hexandra Swartz.
  • loading
  • [1]
    DHAL B,THATOI H N,DAS N N,et al.Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste:a review[J].Journal of Hazardous Materials,2013,250/251:272-291.
    [2]
    GUPTA V K,AGARWALAND S,TAWFIK A S.Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes[J].Water Research,2011,45(6):2207-2212.
    [3]
    MATERN K,KLETTI H,MANSFELDT T.Chemical and mineralogical characterization of chromite ore processing residue from two recent Indian disposal sites[J].Chemosphere,2016,155:188-195.
    [4]
    DING W,STEWART D I,HUMPHREYS P N,et al.Role of an organic carbon-rich soil and Fe(Ⅲ) reduction in reducing the toxicity and environmental mobility of chromium(Ⅵ) at a COPR disposal site[J].Science of the Total Environment,2016,541:1191-1199.
    [5]
    ASHRAF A,BIBI I,NIAZI N K,et al.Chromium(Ⅵ) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions[J].International Journal of Phytoremediation,2017,19(7):605-613.
    [6]
    USHARANI B,VASUDEVAN N.Impact of heavy metal toxicity and constructed wetland system as a tool in remediation[J].Archives of Environmental & Occupational Health,2016,71(2):102-110.
    [7]
    PAPAEVANGELOU V A,GIKAS G D,TSIHRINTZIS V A.Chromium removal from wastewater using HSF and VF pilot-scale constructed wetlands:overall performance,and fate and distribution of this element within the wetland environment[J].Chemosphere,2017,168:716-730.
    [8]
    LIU J,ZHANG X H,YOU S H,et al.Cr(Ⅵ) removal and detoxification in constructed wetlands planted with Leersia hexandra Swartz[J].Ecological Engineering,2014,71:36-40.
    [9]
    伍清新,刘杰,靳振江,等.李氏禾人工湿地净化Cr(Ⅵ)污染水体的性能研究[J].环境工程学报,2014,8(2):536-540.
    [10]
    卜永辉,刘杰,游少鸿,等.六种基质的李氏禾湿地系统对Cr(Ⅵ)净化效果的差异[J].工业安全与环保,2017,43(4):64-67

    ,106.
    [11]
    邹德乙.腐植酸的概念与腐植酸分类问题的探讨[J].腐植酸,2011(4):44-48.
    [12]
    KOSTIC I S,ANDJELKOVIC T D,NIKOLIC R S,et al.Comparative study of binding strengths of heavy metals with humic acid[J].Hemijska Industrija,2013,67(5):773-779.
    [13]
    申静秀,顾闽,范梦婕,等.腐植酸在环境治理中的研究及应用进展[J].现代化工,2020,41(1):30-33.
    [14]
    李威,邹立壮,朱书全,等.近十年腐植酸应用研究综述[J].腐植酸,2006(3):3-8.
    [15]
    ZHANG Y,YANG X,ZHANG S,et al.The influence of humic acids on the accumulation of lead (Pb) and cadmium (Cd) in tobacco leaves grown in different soils[J].Journal of Soil Science and Plant Nutrition,2013,13(1):43-53.
    [16]
    EL-ESWED B,KHALILI F.Adsorption of Cu(Ⅱ) and Ni(Ⅱ) on solid humic acid from the Azraq area,Jordan[J].Journal of Colloid Interface Science,2006,299(2):497-503.
    [17]
    D’AMORE J J,AL-ABED S R,SCHECKEL K G,et al.Methods for Speciation of Metals in Soils[J].Journal of Environmental Quality,2005,34(5):1707-1745.
    [18]
    DEGRYSE F,SMOLDERSAND E,PARKER D R.Partitioning of metals (Cd,Co,Cu,Ni,Pb,Zn) in soils:concepts,methodologies,prediction and applications:a review[J].European Journal of Soil Science,2009,60(4):590-612.
    [19]
    王丹,魏威,梁东丽,等.土壤铜、铬(Ⅵ)复合污染重金属形态转化及其对生物有效性的影响[J].环境科学,2011,32(10):3113-3120.
    [20]
    WEIS J S,GLOVER T,WEIS P.Interactions of metals affect their distribution in tissues of Phragmites australis[J].Environmental Pollution,2004,131(3):409-415.
    [21]
    于皓,安益君,金德才,等.铬污染对土壤细菌群落结构及其构建机制的影响[J].环境科学,2020,42(3):1197-1204.
    [22]
    CHUNG H,KIM M J,KO K,et al.Effects of graphene oxides on soil enzyme activity and microbial biomass[J].Science of the Total Environment,2015,514:307-313.
    [23]
    葛艺,徐明明,徐邵辉,等.铜胁迫对小麦根系微域微生物群落的影响[J].环境科学,2020,42(2):996-1003.
    [24]
    DENG L J,ZENG G M,FAN C Z,et al.Response of rhizosphere microbial community structure and diversity to heavy metal co-pollution in arable soil[J].Applied Microbiology Biotechnology,2015,99(19):8259-8269.
    [25]
    ZHANG Y J,OU J L,DUAN Z K,et al.Adsorption of Cr(Ⅵ) on bamboo bark-based activated carbon in the absence and presence of humic acid[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2015,481:108-116.
    [26]
    武瑞平,薛金辉,王莹.腐殖酸对铅污染土壤理化性质的影响[J].环境科学导刊,2018,37(2):56-61.
    [27]
    GONZALEZ M L,BLANC D,BRAUER de C.Multi-analytical approach and geochemical modeling for mineral trace element speciation in MSWI bottom-ash[J].Waste and Biomass Valorization,2017,10(3):547-560.
    [28]
    林先贵,王一明.腐植酸类物质是土壤健康的重要保障[J].腐植酸,2010,2:1-10.
    [29]
    ZHU Y,ZENG G M,ZHANG P Y,et al.Feasibility of bioleaching combined with Fenton-like reaction to remove heavy metals from sewage sludge[J].Bioresource Technology,2013,142:530-534.
    [30]
    ZHAO T T,GE W Z,NIE Y X,et al.Highly efficient detoxification of Cr(Ⅵ) by brown coal and kerogen:process and structure studies[J].Fuel Processing Technology,2016,150:71-77.
    [31]
    HSU N H,WANG S L,LIN Y C.Reduction of Cr(Ⅵ) by crop-residue-derived black carbon[J].Environmental Science and Technology,2009,43(23):8801-8806.
    [32]
    张杏锋,田超,高波.能源植物皇草对重金属的耐性及修复潜力[J].环境工程学报,2017,11(5):3204-3213.
    [33]
    周桑扬,杨凯,吴晓芙,等.人工湿地植物去除废水中重金属的作用机制研究进展[J].湿地科学,2016,14(5):717-724.
    [34]
    TAN L Q,WANG X X,TAN X L,et al.Bonding properties of humic acid with attapulgite and its influence on U(Ⅵ) sorption[J].Chemical Geology,2017,464:91-100.
    [35]
    LI Y,YUE Q Y,GAO B Y,et al.Adsorption thermodynamic and kinetic studies of dissolved chromium onto humic acids[J].Colloids Surfaces B:Biointerfaces,2008,65(1):25-29.
    [36]
    SANTOSA S J,SISWANTA D,SUDIONO S,et al.Synthesis and utilization of chitin-humic acid hybrid as sorbent for Cr(Ⅲ)[J].Surface Science,2007,601(22):5148-5154.
    [37]
    JIANG W J,CAI Q,XU W,et al.Cr(Ⅵ) adsorption and reduction by humic acid coated on magnetite[J].Environmental Science and Technology,2014,48(14):8078-8085.
    [38]
    靳振江,刘杰,肖瑜,等.处理重金属废水人工湿地中微生物群落结构和酶活性变化[J].环境科学,2011,32(4):1202-1209.
    [39]
    陈素华,孙铁珩,周启星,等.微生物与重金属间的相互作用及其应用研究[J].应用生态学报,2002,13(2):239-242.
    [40]
    杨良静,何俊瑜,任艳芳,等.Cd胁迫对水稻根际土壤酶活和微生物的影响[J].贵州农业科学,2009,37(3):85-88.
    [41]
    张建林,陆欣,王申贵.有机物料配比施用对土壤碱性磷酸酶活性的影响[J].土壤通报,2001,32(2):75-79.
    [42]
    蔡少华.土壤Cr(Ⅵ)与土壤生化活性关系研究.陕西:西北农林科技大学,2008.
    [43]
    TRASAR-CEPEDA C,GIL-SOTRES F,LEIROS M C.Thermodynamic parameters of enzymes in grassland soils from Galicia,NW Spain[J].Soil Biology and Biochemistry,2007,39(1):311-319.
    [44]
    闫峰,吴雄平,梁东丽,等.外源重金属Cr、Cu、Se和Zn对土娄土酶活性的影响[J].西北农林科技大学学报(自然科学版),2008,36(7):91-98.
    [45]
    STPNIEWSKA Z,WOLINSKA A,ZIOMEK J.Response of soil catalase activity to chromium contamination[J].Journal of Environmental Sciences,2009,21(8):1142-1147.
    [46]
    郝建朝,吴沿友,连宾,等.土壤多酚氧化酶性质研究及意义[J].土壤通报,2006,37(3):470-474.
    [47]
    陈光升,钟章成,齐代华.缙云山常绿阔叶林土壤酶活性与土壤肥力的关系[J].四川师范学院学报(自然科学版),2002,23(1):19-23.
    [48]
    关荫松.土壤酶及其研究法[M].北京:农业出版社,1986.
    [49]
    韩春梅,王林山,巩宗强,等.土壤中重金属形态分析及其环境学意义[J].生态学杂志,2005,24(12):1499-1502.
    [50]
    李鱼,万晓宇,王晓丽.沉积物内源与外源重金属形态与酶活性的相关性[J].环境科学与技术,2010,33(4):10-14.
    [51]
    章智明,黄占斌,单瑞娟.腐植酸对土壤改良作用探讨[J].环境与可持续发展,2013,38(3):109-111.
    [52]
    梁艳茹,和文祥,邢少峰,等.不同价态铬对土壤碱性磷酸酶活性的影响[J].西北农林科技大学学报(自然科学版),2010,38(5):156-160,166.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (118) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return