Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
WANG Yajun, CHEN Tianjing, LI Jinshou. PERMEABILITY CHARACTERISTICS TEST ON WASTEWATER IN UNPLANTED BIORETENTION CELL UNDER CONTINUOUS OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 27-31,51. doi: 10.13205/j.hjgc.202201005
Citation: WANG Yajun, CHEN Tianjing, LI Jinshou. PERMEABILITY CHARACTERISTICS TEST ON WASTEWATER IN UNPLANTED BIORETENTION CELL UNDER CONTINUOUS OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 27-31,51. doi: 10.13205/j.hjgc.202201005

PERMEABILITY CHARACTERISTICS TEST ON WASTEWATER IN UNPLANTED BIORETENTION CELL UNDER CONTINUOUS OPERATION

doi: 10.13205/j.hjgc.202201005
  • Received Date: 2021-01-11
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • To explore the permeability of the bioretention cell during sewage treatment under continuous operation, the system performance was investigated by monitoring the changes of the permeability coefficient and porosity under different hydraulic load conditions. The results showed that under the same hydraulic load, the standard permeability coefficient, K20 showed a trend of first decreasing, then increasing, and finally reaching a stable stage(on about the 15 th day). The greater the hydraulic load, the greater its impact on the relative permeability coefficient. The relationship between two parameters reached a significant negative correlation level(P<0.01). Under the condition of low hydraulic load [less than 1.0 m3/(m2·d)], the permeability coefficient was positively correlated with porosity. Under the condition of higher hydraulic load [more than 2.0 m3/(m2·d)], the permeability coefficient and porosity had no significant correlation. The hydraulic load of the BRC should be controlled lower than 2.0 m3/(m2·d), when the sewage was processed under continuous operation, and the system performance was best when the hydraulic load was 1.0 m3/(m2·d). This study could provide theoretical guidance for effectively preventing BRC clogging.
  • [1]
    李迪,陈垚,吕波.生物滞留系统对溶解性污染物的去除特性及优化途径[J].环境工程,2020,38(10):120-127.
    [2]
    DAVIS A P,HUNT W F,TRAVER R G,et al.Bioretention Technology:overview of current practice and future needs[J].Journal of Environmental Engineering,2009,135(3):109-117.
    [3]
    RAJA S R,LEWIS M,OSTENDORF B.Stormwater quality improvement potential of an urbanised catchment using water sensitive retrofits into public parks[J].Urban Forestry & Urban Greening,2014,13(2):315-324.
    [4]
    LEE J,GIL K.Evaluating bioretention hydrology and nutrient removal for restoring wetland function at artificial rainfall[J].Ecological Engineering,2020,150:105823.
    [5]
    许萍,何俊超,张建强,等.生物滞留强化脱氮除磷技术研究进展[J].环境工程,2015,33(11):21-25

    ,30.
    [6]
    LUCKE T,NICHOLS P W B.The pollution removal and stormwater reduction performance of street-side bioretention basins after ten years in operation[J].Science of the Total Environment,2015,536(12):784-792.
    [7]
    DAVIS A P,STAGGE J H,JAMIL E,et al.Hydraulic performance of grass swales for managing highway runoff[J].Water Research,2012,46(20):6775-6786.
    [8]
    LEE J Y,MOON H J,KIM T I,et al.Quantitative analysis on the urban flood mitigation effect by the extensive green roof system[J].Environmental Pollution,2013,181(10):257-261.
    [9]
    许妍,席慕华,耿冲冲,等.无植物生物滞留池去除生活污水中典型抗生素及其效能强化[J].东南大学学报(自然科学版),2020,50(4):748-759.
    [10]
    潘珉,李滨,冯慕华,等.潜流式人工湿地基质堵塞问题对策研究[J].环境工程学报,2011,5(5):1015-1020.
    [11]
    孟莹莹,王会肖,张书函,等.基于生物滞留的城市道路雨水滞蓄净化效果试验研究[J].北京师范大学学报(自然科学版),2013,49(增刊1):286-291.
    [12]
    王亚军.生物过滤系统中多级混合颗粒群渗流过程分析与完善[J].水土保持通报,2017,37(3):329-333.
    [13]
    张宏胜.植物对雨水生物滞留池中氮磷去除及微生物多样性的影响[D].南京:南京信息工程大学,2019.
    [14]
    GONZALEZ-MERCHAN,BARRAUD S,LE C,et al.Monitoring of clogging evolution in the stormwater infiltration system and determinant factors[J].Revue Fran§aise De Gnie Civil,2012,16(1):s34-s47.
    [15]
    DAGENAIS D,BRISSON J,FLETCHER T D.The role of plants in bioretention systems:does the science underpin current guidance?[J].Ecological Engineering,2018,120:532-545.
    [16]
    HATT B E,MORISON P,FIETCHER T D,et al.Stormwater biofiltration systems-adoption guidelines[C]//Image & Signal Processing-international Conference,DBLP,2009.
    [17]
    TAYLOR S W,JAFFE P R.Enhanced in-situ biodegradation and aquifer permeability reduction[J].Journal of Environmental Engineering,1991,117(1):25-46.
    [18]
    潘仪凯,张海江,张旭伟,等.复杂型生物滞留设施的渗透性能试验研究[J].中国给水排水,2018,34(23):134-138.
    [19]
    许巧玲,崔理华,张玲.负荷因素对垂直流人工湿地土壤堵塞的影响[J].环境科学与技术,2014,37(增刊1):1-5.
    [20]
    PLATZER C,MAUCH K.Soil clogging in vertical flow reed beds-Mechanisms,parameters,consequences and.solutions?[J].Water Science & Technology,1997,35(5):175-181.
    [21]
    李曼,华国芬,姬雨雨.垂直流人工湿地堵塞和轮休过程中水流变化规律[J].水处理技术,2017,43(1):57-61.
    [22]
    PINTELON T R R,PICIORANU C,LOOSDRECHT M C M V,et al.The effect of biofilm permeability on bio-clogging of porous media[J].Biotechnology and Bioengineering,2012,109(4):1031-1042.
    [23]
    ZHONG X Q,WU Y Q,XU Z G.Bio-clogging in porous media under discontinuous flow condition[J].Water,Air, & Soil Pollution,2013,224(5):1543.
    [24]
    王振,张彬彬,向衡,等.垂直潜流人工湿地堵塞及其运行效果影响研究[J].中国环境科学,2015,35(8):2494-2502.
    [25]
    于搏海.人工湿地的堵塞规律研究及机理探讨[D].杭州:浙江大学,2016.
    [26]
    BRATIERES K,FLETCHER T D,DELETIC A,et al.Nutrient and sediment removal by stormwater biofilters:a large-scale design optimisation study[J].Water Research,2008,42(14):3930-3940.
    [27]
    苏立君,张宜健,王铁行.不同粒径级砂土渗透特性试验研究[J].岩土力学,2014,35(5):1289-1294.
  • Relative Articles

  • Cited by

    Periodical cited type(6)

    1. 高盼,王宇先,李欣洁,蔡姗姗,徐莹莹,杨慧莹,张巩亮. 半干旱区玉米秸秆还田方式对土壤富里酸含量及其结构特征的影响. 中国土壤与肥料. 2025(01): 35-44 .
    2. 王孔檀,麦力文,王定美,彭实亮,王熊飞,蒙赜,余小兰,林嘉聪,李勤奋. 基于PCA-HCA联合PLS回归模型的蚯蚓粪肥品质等级划分. 中国土壤与肥料. 2024(08): 198-210 .
    3. 李张龙翔,唐燕飞,戴晓虎. 高温预处理对易腐垃圾堆肥腐熟及细菌菌群结构的影响. 环境工程. 2023(06): 124-131+186 . 本站查看
    4. 侯智斌,谢益平,曹长春,徐锦涛. 添加不同比例玉米生物炭的堆肥腐殖质光谱学表征. 科学技术与工程. 2023(26): 11459-11475 .
    5. 王琼,王永歧,马怡,李哲,王岩,郭笑盈. 堆肥腐殖酸演化规律及堆肥工艺对其影响的研究进展. 应用化工. 2023(10): 2865-2869 .
    6. 李达,徐康宁,郭飞. 腐殖酸改良脱碱赤泥的环境风险评估. 环境工程技术学报. 2023(06): 2213-2220 .

    Other cited types(5)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0405101520
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 15.5 %FULLTEXT: 15.5 %META: 83.1 %META: 83.1 %PDF: 1.4 %PDF: 1.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 20.8 %其他: 20.8 %其他: 0.5 %其他: 0.5 %上海: 1.0 %上海: 1.0 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %北京: 1.0 %北京: 1.0 %台州: 1.9 %台州: 1.9 %合肥: 1.0 %合肥: 1.0 %大同: 0.5 %大同: 0.5 %天津: 1.0 %天津: 1.0 %常德: 1.9 %常德: 1.9 %广州: 1.4 %广州: 1.4 %张家口: 1.0 %张家口: 1.0 %成都: 2.4 %成都: 2.4 %昆明: 1.4 %昆明: 1.4 %晋城: 1.0 %晋城: 1.0 %武汉: 1.4 %武汉: 1.4 %沈阳: 1.4 %沈阳: 1.4 %深圳: 0.5 %深圳: 0.5 %湖州: 1.9 %湖州: 1.9 %漯河: 2.4 %漯河: 2.4 %漳州: 0.5 %漳州: 0.5 %芒廷维尤: 22.7 %芒廷维尤: 22.7 %苏州: 0.5 %苏州: 0.5 %蚌埠: 0.5 %蚌埠: 0.5 %衡阳: 0.5 %衡阳: 0.5 %衢州: 1.0 %衢州: 1.0 %西宁: 17.9 %西宁: 17.9 %西安: 0.5 %西安: 0.5 %贵阳: 1.9 %贵阳: 1.9 %运城: 2.4 %运城: 2.4 %遵义: 0.5 %遵义: 0.5 %郑州: 0.5 %郑州: 0.5 %重庆: 1.9 %重庆: 1.9 %金昌: 1.0 %金昌: 1.0 %长沙: 0.5 %长沙: 0.5 %长治: 0.5 %长治: 0.5 %青岛: 1.4 %青岛: 1.4 %其他其他上海临汾保定北京台州合肥大同天津常德广州张家口成都昆明晋城武汉沈阳深圳湖州漯河漳州芒廷维尤苏州蚌埠衡阳衢州西宁西安贵阳运城遵义郑州重庆金昌长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (200) PDF downloads(3) Cited by(11)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return