Citation: | CHEN Chunhong, XU Chenghua, YU Tian, LIU Gang, ZHANG Yaping, HONG Yamin. EX-SITU THERMAL DESORPTION BEHAVIORS OF LOW-RINGS PAHS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 78-85. doi: 10.13205/j.hjgc.202201012 |
[1] |
环境保护部,国土资源部.全国土壤污染状况调查公报[R].2014.
|
[2] |
金赞芳,陈英旭.环境的PAHs污染及其生物修复技术研究进展[J].农业环境保护,2004,20(2):123-125.
|
[3] |
何耀武,区自清,孙铁珩.多环芳烃类化合物在土壤上的吸附[J].应用生态学报,1995,6(4):423-427.
|
[4] |
蔡武.不同氧化剂对炼钢厂土壤中多环芳烃的修复效果研究[D].杭州:浙江大学,2016.
|
[5] |
MUMTAZ M M,GEORGE J D.Toxicological profile for polycyclic aromatic hydrocarbons[J].Polycyclic Compounds,1996.
|
[6] |
WILD S R,JONES K C.Polynuclear aromatic hydrocarbons in the United Kingdom environment:a preliminary source inventory and budget[J].Environmental Pollution,1995,88(1):91-108.
|
[7] |
HONG W J,JIA H,MA W L,et al.Distribution,fate,inhalation exposure and lung cancer risk of atmospheric polycyclic aromatic hydrocarbons in some asian countries[J].Environmental Science & Technology,2016,50(13):7163-7174.
|
[8] |
贺建.表面活性剂-菌群强化泥浆反应器修复菲污染土壤机理研究[D].北京:中国矿业大学,2019.
|
[9] |
ZHAO C,DONG Y,FENG Y P,et al.Thermal desorption for remediation of contaminated soil:a review[J].Chemosphere,2019,221:841-855.
|
[10] |
BUCALA J.Effect of temperature on the release of hexadecane from soil by thermal treatment[J].Journal of Hazardous Materials,2007,143(1):455-461.
|
[11] |
FALCIGLIA P P,GIUSTRA M G,VAGLIASINDI F G A.Low-temperature thermal desorption of diesel polluted soil:influence of temperature and soil texture on contaminant removal kinetics[J].Journal of Hazardous Materials,2011,185(1):392-400.
|
[12] |
孟祥帅,吴萌萌,陈鸿汉,等.某焦化场地非均质包气带中多环芳烃(PAHs)来源及垂向分布特征[J].环境科学,2020.
|
[13] |
魏萌.焦化污染场地土壤中PAHs的赋存特征及热脱附处置研究[D].北京:首都师范大学,2013.
|
[14] |
FALCIGLIA P P,De GUIDI G,CATALFO A,et al.Remediation of soils contaminated with PAHs and nitro-PAHs using microwave irradiation[J].Chemical Engineering Journal,2016,296:162-172.
|
[15] |
CUYPERS C,GROTENHUIS T,JOZIASSE J,et al.Rapid persulfate oxidation predicts PAH bioavailability in soils and sediments[J].Environmental Science & Technology,2000,34(10):2057-2063.
|
[16] |
LING W T,ZENG Y C,GAO Y Z,et al.Availability of polycyclic aromatic hydrocarbons in aging soils[J].Journal of Soils & Sediments,2010,10(5):799-807.
|
[17] |
NAM K,ALEXANDER M.Role of nanoporosity and hydrophobicity in sequestration and bioavailability:tests with model solids[J].Environmental Science Technology,1998,32(1):71-74.
|
[18] |
ROBINSON J P,KINGMAN S W,SNAPE C E,et al.Separation of polyaromatic hydrocarbons from contaminated soils using microwave heating[J].Separation & Purification Technology,2009,69(3):249-254.
|
[19] |
SCHWARZENBACH R P,GSCHWEND P M,IMBODEN D M.Organic acids and bases:acidity constant and partitioning behavior[M]//Environmental Organic Chemistry.John Wiley & Sons,Ltd,2005.
|
[20] |
刘洁.多氯联苯污染土壤改性剂协同热脱附机理及实验研究[D].杭州:浙江大学,2016.
|
[21] |
陈王若尘.添加剂对焦化污染土壤性质及热脱附行为影响研究[D].杭州:浙江大学,2020.
|
[22] |
LIU J,QI Z F,LI X D,et al.Thermal desorption of PCBs from contaminated soil with copper dichloride[J].Environmental Science & Pollution Research,2015,22:19093-19100.
|
[23] |
FUNADA M,NAKAND T,MORIWAKI H,et al.Removal of polycyclic aromatic hydrocarbons from soil using a composite material containing iron and activated carbon in the freeze-dried calcium alginate matrix:novel soil cleanup technique[J].Journal of Hazardous Materials,2018,351:232-239.
|
[24] |
SITE A D.The vapor pressure of environmentally significant organic chemicals:a review of methods and data at ambient temperature[J].Journal of Physical & Chemical Reference Data,1997,26(1):157-193.
|
[25] |
LI F Z,ZHANG Y P,WANG S,et al.Insight into ex-situ thermal desorption of soils contaminated with petroleum via carbon number-based fraction approach[J].Chemical Engineering Journal,2019,385:123946.
|
[26] |
ARARUNA J T,PORTES V L O,SOARES A P L,et al.Oil spills debris clean up by thermal desorption[J].Journal of Hazardous Materials,2004,110(1/2/3):161-171.
|
[27] |
夏天翔,姜林,魏萌,等.焦化厂土壤中PAHs的热脱附行为及其对土壤性质的影响[J].化工学报,2014,65(4):1470-1480.
|
[1] | WANG Guiyun, SANG Chunhui, XIAO Meng, NIE Yuxin, YANG Xintong, ZHANG Hongzhen, LI Xianglan. Environmental footprint analysis for contaminated soil remediation in paper mill based on SEFA tool[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 80-88. doi: 10.13205/j.hjgc.202501009 |
[2] | HAN Jianjun, CHAI Lujun, WANG Guojin, ZHANG Yu, QIN Kangjia, ZHOU Man, LIANG Xuejie, HAO Junpeng, WANG Hui. ISOLATION AND IDENTIFICATION OF A NEW SULFATE-REDUCING BACTERIUM AND ITS IN SITU REMEDIATION EFFECT OF HEXAVALENT CHROMIUM-CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 192-198. doi: 10.13205/j.hjgc.202402023 |
[3] | WANG Shuqiao, YUAN Jingzhou, GUO Jinghan, ZHANG Dingchao, HAN Mengfei, GE Yuxuan, GENG Yaxian, WANG Xin. DESORPTION OF SOIL BENZENE SERIES CONTAMINANTS USING ELECTROMAGNETIC FIELD SIMULATED MICROWAVES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 190-198. doi: 10.13205/j.hjgc.202403024 |
[4] | LIN Huili, JIN Zhaodi, ZHANG Shuli, ZHANG Guangxue, YU Qun, ZHANG Min. NUMERICAL SIMULATION AND EVALUATION OF INDIRECT THERMAL DESORPTION EQUIPMENT FOR PETROLEUM HYDROCARBON CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 261-267. doi: 10.13205/j.hjgc.202403032 |
[5] | LI Yuping, FAN Baoyun, DONG Kangran, WAN Jinzhong, AI Yingbo, WANG Baotian. EXPERIMENTAL STUDY ON THERMAL REMEDIATION OF PETROLEUM HYDROCARBON CONTAMINATED SOILS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 242-249. doi: 10.13205/j.hjgc.202404028 |
[6] | LUO Qing, WU Zhongping, WANG Congcong, LI Yujie. REMEDIATION CAPABILITY OF FOUR HERBS ON CHLORINATED ORGANOPHOSPHATE FLAME RETARDANTS CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 155-162. doi: 10.13205/j.hjgc.202303021 |
[7] | WANG Sheng, HE Jie, LIU Zhizong, LIU Qi, CHEN Yajun, ZHANG Naiming. EFFECT OF PLANTING SEDUM SPECTABILE ON CADMIUM CONCENTRATION IN CONTAMINATED SOIL RUNOFF[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 169-175. doi: 10.13205/j.hjgc.202308021 |
[8] | LI Shefeng, DU Shaoxia, BAO Shenxu, YAN Shuiping, LIU Ziyang. BIBLIOMETRIC ANALYSIS AND DEVELOPMENT TREND DISCUSSION OF CONTAMINATED SOIL REMEDIATION TECHNOLOGY IN INTERNATIONAL RESEARCH[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(12): 329-336,342. doi: 10.13205/j.hjgc.202312041 |
[9] | XUE Chengjie, FANG Zhanqiang. PATH OF CARBON EMISSION PEAKING AND CARBON NEUTRALITY IN SOIL REMEDIATION INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 231-238. doi: 10.13205/j.hjgc.202208033 |
[10] | GUO Lin, CAO Shumiao, YUAN Xunfeng, LIU Jun. THE METHOD OF HEAVY METAL CONTAMINATED SOIL IN TAILINGS POND BASED ON PHYTO-ELECTROKINETIC OF SIMULATED REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 152-158. doi: 10.13205/j.hjgc.202211021 |
[11] | HAN Han, WANG Xiao, YIN Mengqiuzi, ZHANG Qiwu, HE Xiaoman. MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 100-105,112. doi: 10.13205/j.hjgc.202202016 |
[12] | WANG Hua-wei, WU Ya-jing, XU Rong, SUN Ying-jie, LI Shu-peng, WANG Ya-nan, ZHONG Chen-yu, SHI Chang-fei. STABILIZATION OF ARSENIC IN CONTAMINATED SOILS USING BIOLOGICAL Mn OXIDE (Bio-MnOx)[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 205-210,216. doi: 10.13205/j.hjgc.202109029 |
[13] | YANG Liu-yang, WANG Lei, CUI Chang-hao, LIU Mei-jia, LI Li, YAN Da-hai. TRANSFORMATION OF Cr CHEMICAL FORMS IN CEMENT KILNS CO-PROCESSING Cr CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(10): 185-190. doi: 10.13205/j.hjgc.202110026 |
[14] | XIE Bing-kun, JIANG Zu-ming, ZENG Jun, JI Long-jie, LIU Peng, LI Shu-peng, HAN Jin, TIAN Qi-dong. ENERGY EFFICIENCY ANALYSIS OF IN-SITU ELECTROTHERMAL DESORPTION TECHNOLOGY IN POLYCYCLIC AROMATIC HYDROCARBONS (PAHS) CONTAMINATED SITE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 173-178,187. doi: 10.13205/j.hjgc.202108024 |
[15] | LUO Wei-ye, XU Wei-jian, ZHANG Zhi-peng, GONG Zheng-jun, WANG Dong-mei. STABILIZATION OF AVAILABLE HEAVY METALS IN LEAD-ZINC MINING SOILS BY BIOCHAR[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 157-162. doi: 10.13205/j.hjgc.202012026 |
[16] | ZHENG Jin, WANG Xin-yu, LI Jie, SONG Quan-wei, LI Hong-li, WANG Xiao-ling, TIAN Pei-ting. BIOREMEDIATION OF CRUDE OIL IN CONTAMINATED SOIL BY MICROORGANISMS IMMOBILIZED WITH HUMIC ACID-MODIFIED BIOFUEL ASH[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 34-40. doi: 10.13205/j.hjgc.202008006 |
[17] | WU Rui-ping. EFFECT OF PYROLYSIS TEMPERATURE ON BIOCHAR ENHANCED TREATMENT OF CADMIUM CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 241-246. doi: 10.13205/j.hjgc.202009039 |
[18] | CHEN Jun-hua, ZHU Hong, SHAN Hui-feng, XING Yi-lan. PERFORMANCE OF SURFACTANTS ENHANCED AEROBIC BIOREMEDIATION OF PAHs CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 185-190. doi: 10.13205/j.hjgc.202005032 |
[20] | Zhu Wenyuan Song Zixin Li Shefeng Liu Gengsheng Tao Ling Xu Xinying Qin Hui, . RESEARCH ON LOGISTICS ORGANIZATION IN PROCESS OF CONTAMINATED SOIL REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 164-167. doi: 10.13205/j.hjgc.201502037 |