Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Mu, WANG Shao-hua, WANG Tong-chun, DUAN Meng-yuan, SU Ying-qiang, HAN Hui-ming, LIN Xiao-feng, LI Ze-hua. A LARGE-SCALE ENGINEERING APPLICATION OF MICROFILTRATION-NANOFILTRATION COMBINED TECHNOLOGY IN DRINKING WATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 151-155. doi: 10.13205/j.hjgc.202107020
Citation: LI Zefeng, LI Meng, ZHANG Qian, LI Jiawei, ZHANG Yibo, LI Chengwei. ASSESSMENT OF NATURAL SPONGE WATER STORAGE MONITORING SYSTEM BASED ON OPTICAL FIBER SENSING TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 155-160. doi: 10.13205/j.hjgc.202201023

ASSESSMENT OF NATURAL SPONGE WATER STORAGE MONITORING SYSTEM BASED ON OPTICAL FIBER SENSING TECHNOLOGY

doi: 10.13205/j.hjgc.202201023
  • Received Date: 2021-01-18
    Available Online: 2022-03-30
  • Publish Date: 2022-03-30
  • Scientific monitoring of sponge facilities operation can not only provide effective assessment for the construction of sponge city, but also give data feedback and guidance suggestion for sponge cities construction. However, there is no effective method to monitor and evaluate the operation efficiency of natural sponges. Taking the sponge pilot area of a large-scale high-speed railway transportation hub in western Hubei as an example, a monitoring system of natural sponge was established. The water penetration rate monitored by the optical fiber was the basic parameter to explore the functional relationship between it and the water content. Then a main water storage monitoring model of the system was established. Finally, under actual rainfall condition, the monitoring performance of the system in terms of runoff and water saturation early warning was evaluated. The evaluation results showed that the optical fiber sensor monitoring system was with high accuracy in runoff monitoring, and the runoff generation warning time was consistent with the actual one. The optical fiber sensing and monitoring system showed strong adaptability and excellent performance, which provided certain technical support for the automatic operation of sponge city facilities.
  • [1]
    中华人民共和国住房和城乡建设部.关于印发《海绵城市建设绩效评价与考核办法(试行)》的通知(建成[2015]635号)[Z]中华人民共和国住房和城乡建设部,2015-07-10.
    [2]
    周珏琳.住房城乡建设部出台试行办法,将评价考核海绵城市建设效果[J].风景园林,2015(8):10.
    [3]
    孙丹焱,郑涛,徐竟成.城市绿地土壤渗透性改良对雨水径流污染的削减效果及去除规律[J].环境工程学报,2019,13(2):372-380.
    [4]
    李嘉炜,李孟,李泽丰,等.光纤传感技术应用于雨水径流监测中的研究[J].环境工程,2021,39(5):190-195.
    [5]
    郭效琛,赵冬泉,辛克刚,等.基于在线监测的海绵城市源头项目径流控制效果评价研究[J].给水排水,2020,56(1):57-63.
    [6]
    张士官,吕谋,焦春蛟.雨洪管理模型SWMM原理解析及应用进展[J].人民珠江,2019,40(12):37-42

    ,69.
    [7]
    XU F L,LI X Y,SHI Y,et al.Recent developments for flexible pressure sensors:a review[J]Micromachines,2018,9(11):580.
    [8]
    李成浩,刘显明,章鹏.温度传感器时间常数测试技术发展现状与分析[J].宇航计测技术,2020,40(2):1-7

    ,13.
    [9]
    GETINET W,JENS K M,PEDERSEN K N,et al.Enhanced pressure and thermal sensitivity of polymer optical fiber Bragg grating sensors[J].Optics & Laser Technology,2020,130:106357.
    [10]
    成志轩,金家明,王珺.雨型对低影响开发设施径流控制效果的影响[J].中国给水排水,2019,35(1):134-138.
    [11]
    张健,覃翠,余辉龙.浸入式双束多普勒流量计在污水管网流量监测中的应用[J].给水排水,2016,52(2):101-104.
    [12]
    张旺,庞靖鹏.海绵城市建设应作为新时期城市治水的重要内容[J].水利发展研究,2014,14(9):5-7.
    [13]
    MARQUART A,GOLDBACH L,BLAUM N.Soil-texture affects the influence of termite macropores on soil water infiltration in a semi-arid savanna[J].Ecohydrology,2020,13(8).
  • Relative Articles

    [1]LIU Wenkai, WANG Kunpeng, WANG Xiaomao, HUANG Xia. HIGHLY SELECTIVE NANOFILTRATION SEPARATION TECHNOLOGY FACILITATES RESOURCE EXTRACTION AND RECOVERY FROM HIGH SALINITY ENVIRONMENTS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 29-41. doi: 10.13205/j.hjgc.202409003
    [2]KONG Wanting, LI Xuesong, WANG Zhiwei. RECENT ADVANCES IN ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY TECHNOLOGY FOR CHARACTERIZATION OF FOULING AND MASS TRANSFER PROCESSES ON NANOFILTRATION AND REVERSE OSMOSIS MEMBRANES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 51-62. doi: 10.13205/j.hjgc.202409005
    [3]YANG Yiqing, ZHANG Yuxiang, ZHANG Yufei, LI Yaohuang, WU Mingyu, ZHANG Nan, CHEN Xiaoqiang. GAS PRODUCTION AND LEACHATE PROPERTIES OF MUNICIPAL SOLID WASTE WITH CONTINUOUS INJECTION OF CONCENTRATED NF LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 148-154. doi: 10.13205/j.hjgc.202303020
    [4]ZENG Guangshu, ZHOU Zhenchao, LIN Yanhan, GE Ziye, LIN Zejun, SHUAI Xinyi, ZHOU Jinyu, CHEN Hong. DISTRIBUTION OF ANTIBIOTIC RESISTANCE GENES AND EXPOSURE RISK IN DRINKING WATER: A REVIEW[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 114-123. doi: 10.13205/j.hjgc.202309014
    [5]FENG Guizhen, HUANG Lin, FAN Shixiu. EFFECT OF ORGANIC MATTER CHARACTERISTICS IN RAW WATER ON NANOFILTRATION MEMBRANE FOULING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(2): 1-6,42. doi: 10.13205/j.hjgc.202302001
    [6]ZHOU Kang, WANG Zhen-kai, ZHANG Gui-cheng, CHEN Xin-an, CHENG Yan, LUO Gang, SUN Sheng-peng. BIODEGRADATION AND TERTIARY TREATMENT EFFICIENCIES OF TYPICAL PHARMACEUTICAL MICROPOLLUTANTS BY MBBR AND UVC-BASED ADVANCED OXIDATION PROCESSES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(5): 37-43. doi: 10.13205/j.hjgc.202205006
    [7]CHANG Jia-yu, YU Shui-li, LIU Hua-fa, GAO Le, LIU Gui-cai. EVOLUTION IN MEMBRANE PERFORMANCE OF GROUNDWATER SOURCED WATERWORKS DURING LONG-TERM OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 73-79. doi: 10.13205/j.hjgc.202107008
    [8]YANG Zhe, DAI Ruo-bin, WEN Yue, WANG Li, WANG Zhi-wei, TANG Chu-yang. RECENT PROGRESS OF NANOFILTRATION MEMBRANE IN WATER TREATMENT AND WATER REUSE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 1-12. doi: 10.13205/j.hjgc.202107001
    [9]XU Lan, ZHOU Zhen-chao, ZHU Lin, LIU Yang, SHUAI Xin-yi, LIN Ze-jun, CHEN Hong. REMOVAL EFFICIENCY OF ANTIBIOTIC RESISTOME IN ACTIVATED CARBON DRINKING WATER PURIFIERS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 27-33. doi: 10.13205/j.hjgc.202106005
    [10]SAI Shi-jie, LI Mai-jun, DANG Ping, LIU Hui, ZHANG Na, HUANG Xia. APPLICATION OF HIGH SEPARATION NANOFILTRATION PROCESS IN ZERO DISCHARGE OF HIGH SALT WASTEWATER FROM COAL CHEMICAL INDUSTRY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 173-178. doi: 10.13205/j.hjgc.202107024
    [11]YANG Shu-jun, ZHANG Chen, HE Jun, XIONG Jian-ying, LI Xue-ting, HUANG Xiao-wen. ENGINEERING APPLICATION OF NANOFILTRATION & THREE-LEVELS REDUCTION OF NANOFILTRATION CONCENTRATE TECHNOLOGY FOR ADVANCED TREATMENT OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(6): 81-87,114. doi: 10.13205/j.hjgc.202006013
    [12]YANG Pei-lin, WANG Ji, WANG Zhi-kang, ZHANG Guang-long, QIN Fan-xin. PHTHALATE ESTERS POLLUTION CHARACTERISTICS AND HEALTH RISK OF DRINKING WATER SOURCES IN GUIYANG[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 172-177,27. doi: 10.13205/j.hjgc.202001028
    [13]FU Rao, ZHANG Wen-long, FENG Jiang-tao, YAN Wei. SYNTHESIZATION OF ANATASE TiO2 SYNTHESIZED AT LOW TEMPERATURE, AND ITS ADSORPTION PERFORMANCE ON FLUORIDE ION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 70-76. doi: 10.13205/j.hjgc.202002009
  • Cited by

    Periodical cited type(0)

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04020406080100
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.2 %FULLTEXT: 8.2 %META: 89.8 %META: 89.8 %PDF: 2.0 %PDF: 2.0 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 11.3 %其他: 11.3 %China: 0.8 %China: 0.8 %[]: 0.2 %[]: 0.2 %上海: 5.4 %上海: 5.4 %东莞: 1.7 %东莞: 1.7 %临汾: 0.2 %临汾: 0.2 %临沂: 0.2 %临沂: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊犁: 0.2 %伊犁: 0.2 %佛山: 0.6 %佛山: 0.6 %保定: 0.8 %保定: 0.8 %信阳: 0.6 %信阳: 0.6 %北京: 7.6 %北京: 7.6 %十堰: 1.4 %十堰: 1.4 %南京: 2.6 %南京: 2.6 %厦门: 0.3 %厦门: 0.3 %台州: 1.4 %台州: 1.4 %合肥: 0.3 %合肥: 0.3 %哈尔滨: 0.6 %哈尔滨: 0.6 %唐山: 0.2 %唐山: 0.2 %嘉兴: 1.6 %嘉兴: 1.6 %大连: 0.6 %大连: 0.6 %天津: 5.0 %天津: 5.0 %太原: 0.5 %太原: 0.5 %宁波: 0.9 %宁波: 0.9 %宜春: 0.5 %宜春: 0.5 %宣城: 0.8 %宣城: 0.8 %宿州: 0.3 %宿州: 0.3 %常州: 0.8 %常州: 0.8 %常德: 0.2 %常德: 0.2 %广州: 0.6 %广州: 0.6 %张家口: 0.3 %张家口: 0.3 %徐州: 0.8 %徐州: 0.8 %成都: 0.8 %成都: 0.8 %扬州: 2.3 %扬州: 2.3 %无锡: 0.2 %无锡: 0.2 %昆明: 0.3 %昆明: 0.3 %晋城: 0.3 %晋城: 0.3 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.7 %杭州: 1.7 %武汉: 1.4 %武汉: 1.4 %江门: 0.9 %江门: 0.9 %沈阳: 0.2 %沈阳: 0.2 %济南: 0.5 %济南: 0.5 %济源: 0.2 %济源: 0.2 %海口: 0.5 %海口: 0.5 %清远: 0.2 %清远: 0.2 %温州: 1.4 %温州: 1.4 %湖州: 0.5 %湖州: 0.5 %漯河: 11.2 %漯河: 11.2 %烟台: 0.2 %烟台: 0.2 %盐城: 0.3 %盐城: 0.3 %石家庄: 0.6 %石家庄: 0.6 %秦皇岛: 0.2 %秦皇岛: 0.2 %绍兴: 0.2 %绍兴: 0.2 %舟山: 0.2 %舟山: 0.2 %芒廷维尤: 6.2 %芒廷维尤: 6.2 %芝加哥: 0.6 %芝加哥: 0.6 %苏州: 0.2 %苏州: 0.2 %萍乡: 0.2 %萍乡: 0.2 %衡阳: 0.3 %衡阳: 0.3 %衢州: 1.1 %衢州: 1.1 %西宁: 9.5 %西宁: 9.5 %西安: 0.8 %西安: 0.8 %贵阳: 0.2 %贵阳: 0.2 %运城: 1.6 %运城: 1.6 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.5 %邯郸: 0.5 %郑州: 1.1 %郑州: 1.1 %重庆: 0.6 %重庆: 0.6 %长沙: 3.0 %长沙: 3.0 %长治: 0.2 %长治: 0.2 %阳泉: 0.3 %阳泉: 0.3 %青岛: 0.5 %青岛: 0.5 %其他China[]上海东莞临汾临沂乌鲁木齐伊犁佛山保定信阳北京十堰南京厦门台州合肥哈尔滨唐山嘉兴大连天津太原宁波宜春宣城宿州常州常德广州张家口徐州成都扬州无锡昆明晋城朝阳杭州武汉江门沈阳济南济源海口清远温州湖州漯河烟台盐城石家庄秦皇岛绍兴舟山芒廷维尤芝加哥苏州萍乡衡阳衢州西宁西安贵阳运城遵义邯郸郑州重庆长沙长治阳泉青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (350) PDF downloads(1) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return