Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
SHEN Song, LIU Lei, WEN Wei, XING Yi, SU Wei, SUN Jiaqi. POLLUTION CHARACTERIZATION AND SOURCE ANALYSIS OF CARBON COMPONENTS OF PM2.5 IN BEIJING AND SURROUNDING AREAS IN SUMMER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 71-80. doi: 10.13205/j.hjgc.202202012
Citation: LIANG Baorui, WANG Bin, MA Zhiliang, LIU Junjie, XU Shuiyang, WEI Zhenqiang, ZHANG Hui. SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 8-13,126. doi: 10.13205/j.hjgc.202202002

SIMULTANEOUS CATALYTIC PURIFICATION OF NOx AND O-DCB WITH SUPPORTED Mn HYDROTALCITE-LIKE STRUCTURE CATALYST

doi: 10.13205/j.hjgc.202202002
  • Received Date: 2021-02-23
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • The cobalt-iron layered double hydroxide structure carrier(CoFe-LDH) was successfully prepared by the co-precipitation method, and the active component Mn was loaded by the impregnation method and calcined to prepare the hydrotalcite-like structure catalyst MnxCoFe-LDO catalyst with different Mn loadings(Where x was the mass ratio of manganese nitrate solution to CoFe-LDH). The catalytic performance of the catalyst on nitrogen oxides(NOx) and chlorinated volatile organic compounds(CVOCs) in typical industrial exhaust gas was explored, and the catalyst was characterized by XRD, H2-TPR, NH3-TPD and TEM-EDX mapping. The results showed that the addition of Mn greatly improved the catalytic performance of CoFe-LDO. Among them, the catalyst with a mass ratio of 0.25 had the highest activity. The denitration efficiency was maintained above 90% in the test temperature range, and the efficiency of o-DCB removal at 300 ℃ could be up to 95.4%. This was mainly due to the best dispersibility of the active component Mn of the catalyst prepared under this ratio, and the best redox performance.
  • [1]
    邢奕,张文伯,苏伟,等.中国钢铁行业超低排放之路[J].工程科学学报,2021,43(1):1-9.
    [2]
    梁宝瑞,赵荣志,张文伯,等.钢铁行业二噁英的形成机理及降解方法研究现状[J].中国冶金,2021,31(2):1-5.
    [3]
    闫晓淼,李玉然,朱廷钰,等.钢铁烧结烟气多污染物排放及协同控制概述[J].环境工程技术学报,2015,5(2):85-90.
    [4]
    张璞,王珲,李鹏飞,等.烧结烟气中污染物防治技术应用现状[J].环境工程,2017,35(7):101-105.
    [5]
    JOHNSON J.Dioxin risk:are we sure yet?[J].Environmental Science & Technology,1995,29(1):24A-25A.
    [6]
    SHOKOUHIMEHR M,HONG K,LEE T H,et al.Magnetically retrievable nanocomposite adorned with Pd nanocatalysts:efficient reduction of nitroaromatics in aqueous media[J].Green Chemistry,2018,20:3809-3817.
    [7]
    GORLIN Y,CHUNG C J,NORDLUND D,et al.Mn3O4 supported on glassy carbon:an active non-precious metal catalyst for the oxygen reduction reaction[J].Acs Catalysis,2013,2(12):2687-2694.
    [8]
    WANG X Y,KANG Q,LI D.Low-temperature catalytic combustion of chlorobenzene over MnOx-CeO2 mixed oxide catalysts[J].Catalysis Communications,2008,9(13):2158-2162.
    [9]
    TSONCHEVA T,ISSA G,BLASCO T,et al.Catalytic VOCs elimination over copper and cerium oxide modified mesoporous SBA-15 silica[J].Applied Catalysis A:General,2013,453(1):1-12.
    [10]
    ZHANG Z C,XU B,WANG X.Engineering nanointerfaces for nanocatalysis[J].Chemical Society Reviews,2014,43(22):7870-7886.
    [11]
    ZHANG J T,LI Z,CHEN Y,et al.Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries[j].angewandte chemie international edition,2018,57(34):87-95.
    [12]
    YAN Q H,CHEN S N,ZHANG C,et al.Synthesis and catalytic performance of Cu1Mn0.5Ti0.5Ox mixed oxide as low-temperature NH3-SCR catalyst with enhanced SO2 resistance[J].Applied Catalysis B:Environmental,2018,238(2):236-247.
    [13]
    CHEN S N,YAN Q H,ZHANG C,et al.A novel highly active and sulfur resistant catalyst from Mn-Fe-Al layered double hydroxide for low temperature NH3-SCR[J].Catalysis Today,2019,327(54):81-89.
    [14]
    LU H T,SUI M H,YUAN B J,et al.Efficient degradation of nitrobenzene by Cu-Co-Fe-LDH catalyzed peroxymonosulfate to produce hydroxyl radicals[J].Chemical Engineering Journal,2019,357(14):140-149.
    [15]
    FENG L X,LI A,LI Y X,et al.A highly active CoFe layered double hydroxide for water splitting[J].ChemPlusChem,2017,82(3):483-488.
    [16]
    WU X,CI C,DU Y L,et al.Facile synthesis of NiAl-LDHs with tunable establishment of acid-base activity sites[J].Materials Chemistry and Physics,2018,211(61):72-78.
    [17]
    CHMIELARZ L,KUŚTROWSKI P, RAFALSKA-ŁASOCHA A, et al.Influence of Cu,Co and Ni cations incorporated in brucite-type layers on thermal behaviour of hydrotalcites and reducibility of the derived mixed oxide systems[J].Thermochimica Acta,2002,395(12):225-236.
    [18]
    YAN Q H,NIE Y,YANG R Y,et al.Highly dispersed CuyAlOx mixed oxides as superiorlow-temperature alkali metal and SO2 resistant NH3-SCR catalysts[J].Applied Catalysis A:General,2017,538(2):37-50.
    [19]
    NIE Y,YAN Q H,CHEN S N,et al.CuTi LDH derived NH3-SCR catalysts with highly dispersed CuO active phase and improved SO2 resistance[J].Catalysis Communications,2017,97(31):47-50.
    [20]
    KIM S C,SHIM W G.Catalytic combustion of VOCs over a series of manganese oxide catalysts[J].Applied Catalysis B Environmental,2010,98(34):180-185.
    [21]
    XIONG S C,PENG Y,WANG D,et al.The role of the Cu dopant on a Mn3O4 spinel SCR catalyst:Improvement of low-temperature activity and sulfur resistance[J].Chemical Engineering Journal,2020,387:124090.
    [22]
    OBALOVÁ L,KARÁSKOVÁ K,JIRÁTOVÁ K,et al.Effect of potassium in calcined Co-Mn-Al layered double hydroxide on the catalytic decomposition of N2O[J].Applied Catalysis B Environmental,2009,90(12):132-140.
    [23]
    ZHAN S H,ZHU D D,QIU M Y,et al.Highly efficient removal of NO with ordered mesoporous manganese oxide at low temperature[J].RSC Advances,2015,5(37):29353-29361.
    [24]
    LIU J X,SHI X B,LIU H,et al.Study on the performance of magnetic Co3O4/γ-Fe2O3catalyst in NO+CO reaction[J].Applied Surface Science,2020,533:147498.
    [25]
    KHDER A E R S,ALTASS H M,ORIF M I,et al.Preparation and characterization of highly active Pd nanoparticles supported Mn3O4 catalyst for low-temperature CO oxidation[J].Materials Research Bulletin,2019,113(3):215-222.
  • Relative Articles

    [1]WU Yihao, CUI Yaojia, ZANG Xinzhi, WANG Wenqiang, YE Zhaolian. OXIDATIVE POTENTIAL AND SOURCE APPORTIONMENT OF PM2.5 DURING SPRING IN CHANGZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 53-61. doi: 10.13205/j.hjgc.202405007
    [2]YANG Zhixuan, LI Lanqing, LIU Huanjia, YANG Ying, XU Mengyuan, JIA Mengke, LIU Hengzhi. SEASONAL VARIATION, SOURCE AND LIGHT EXTINCTION CONTRIBUTION OF WATER-SOLUBLE INORGANIC IONS OF PM2.5 IN THE NORTHERN SUBURB OF ANYANG, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(6): 71-81. doi: 10.13205/j.hjgc.202406009
    [3]GUO Qianjin. COMPONENTS CHARACTERISTICS AND SOURCE APPORTIONMENT OF PM2.5 IN AUTUMN AND WINTER IN JINCHENG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 153-161. doi: 10.13205/j.hjgc.202407017
    [4]XU Yuanqian, FU Guangyu, SHENG Haozhe, YUE Libo, SUN Peng, LUO Yilin, CAO Jiahui, CAO Xia, CHEN Yang. PM2.5 POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT IN A TYPICAL INDUSTRIAL CITY OF HENAN PROVINCE DURING AUTUMN AND WINTER[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(12): 136-144. doi: 10.13205/j.hjgc.202412017
    [5]WEI Xiangnan, MA Yunfeng, BAO Huiyu, ZHAO Huijie, SUN Xuebin, WANG Shuai, HOU Le. CHARACTERISTICS ANALYSIS OF PM2.5 AND O3 POLLUTION IN SHENYANG CITY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 73-82. doi: 10.13205/j.hjgc.202410010
    [6]XU Yang, YAN Yulong, DUAN Xiaolin, WU Jing, PENG Lin, ZHANG Xiangyu, NIU Yueyuan, LIU Zhuocheng, ZHANG Dayu. CHARACTERISTICS AND SOURCE ANALYSIS OF HALOCARBONS IN SUMMER AT HIGH ALTITUDE BACKGROUND SITE OF NAMCO, TIBETAN PLATEAU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 55-62. doi: 10.13205/j.hjgc.202304008
    [7]ZHANG Yibing, LIANG Yiqun, ZHANG Yuan, FANG Yinxiang, NIU Hongya, FAN Jingsen. SOURCE APPORTIONMENT AND ECOLOGICAL RISK ASSESSMENT OF HEAVY METALS IN PM2.5 IN THE FENGFENG MINING AREA IN 2017—2019[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 242-250. doi: 10.13205/j.hjgc.202308031
    [8]LI Hongliang, TAO Jie, LI Lanqing, ZHAO Wenpeng, XU Mengyuan, JIA Mengke, YANG Ying, LIU Huanjia. POLLUTION CHARACTERISTICS AND SOURCE APPORTIONMENT OF WATER-SOLUBLE IONS IN PM2.5 IN XINXIANG[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 117-126. doi: 10.13205/j.hjgc.202308015
    [9]LI Yang, LIU Yong-he, WANG Xi-yue, WANG Hai-lin. SPATIAL-TEMPORAL CHARACTERISTICS OF PM2.5 AND PM10 AND THEIR RELATIONSHIPS WITH METEOROLOGICAL FACTORS IN JIAOZUO, HENAN[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 44-53. doi: 10.13205/j.hjgc.202209006
    [10]ZHAO Hui-jie, MA Yun-feng, WANG Shuai, LIU Qi-yao, WEI Xiang-nan. CAUSE ANALYSIS OF A HEAVY PM2.5 POLLUTION PROCESS OCCURED IN SHENYANG[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 33-43. doi: 10.13205/j.hjgc.202209005
    [11]ZHU Xue-tao, LIN Hai-ying, FENG Qing-ge, ZHAO Bo-han, ZHU Yi-fan, LAN Wen-lu, LI Tian-shen. POLLUTION AND RISK ASSESSMENT, SOURCE ANALYSIS OF HEAVY METALS IN SURFACE SEDIMENTS OF BEIBU GULF, GUANGXI[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(8): 69-76. doi: 10.13205/j.hjgc.202108009
    [12]ZHANG Kuo, ZHANG Yong-bin, LI Cheng-ming, DAI Zhao-xin. SEASONAL DIFFERENCE ANALYSIS OF THE RELATIONSHIP BETWEEN PM2.5 AND LAND USE: A CASE STUDY OF WEIFANG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 72-78. doi: 10.13205/j.hjgc.202104012
    [13]YANG Zhi-hua, ZHANG Rui, LIU Qiong-yu, TAO Yuan, JIANG Jun-ting, TAN Jing, CHENG Jin-jun, YE Xun. ESTABLISHMENT AND CHARACTERISTIC ANALYSIS ON FINE PARTICULATE MATTER SOURCE PROFILE OF OPEN-SOURCES IN WUHAN[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 80-88. doi: 10.13205/j.hjgc.202105011
    [14]SU Ming-wei, ZHANG Wei-feng, ZHENG Run-he. DISTRIBUTION CHARACTERISTICS AND DIFFERENCE ANALYSIS OF PM2.5 BASED ON WAVELET ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 96-103. doi: 10.13205/j.hjgc.202105013
    [15]WANG Cheng, CAO Jing-yuan, DUAN Xiao-lin, CHEN Hao, YAN Yu-long, PENG Lin. CHARACTERISTICS AND SOURCES ANALYSIS OF CARBONACEOUS COMPONENTS IN PM2.5 IN WINTER IN FOUR CITIES OF SHANXI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 114-121. doi: 10.13205/j.hjgc.202106017
    [16]ZHAO Bin, LIU Bin. APPLICATION OF STACKING IN GROUND-LEVEL PM2.5 CONCENTRATION ESTIMATING[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 153-159. doi: 10.13205/j.hjgc.202002022
    [17]ZHAO Wen-cheng, WANG Fang. ANALYSIS OF URBAN AIR QUALITY INDEX BASED ON MULTISCALE CROSS TREND SAMPLE ENTROPY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 91-98. doi: 10.13205/j.hjgc.202002013
    [18]WEI Wen-jing, XIE Bing-geng, ZHOU Kai-chun, LI Xiao-qing. RESEARCH ON TEMPORAL AND SPATIAL VARIATIONS OF ATMOSPHERIC PM2.5 AND PM10 AND THE INFLUENCING FACTORS IN SHANDONG, CHINA DURING 2013—2018[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 103-111. doi: 10.13205/j.hjgc.202012018
    [19]ZHANG Zhong-di, SHAO Tian-jie, HUANG Xiao-gang, WEI Pei-ru. CHARACTERISTICS AND POTENTIAL SOURCES OF PM2.5 POLLUTION IN BEIJING-TIANJIN-HEBEI REGION IN 2017[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(2): 99-106,134. doi: 10.13205/j.hjgc.202002014
    [20]DING Shu-qin, WU Jia-ping, WAN Xue-ping, JIANG Lin, ZHAO Xue-ting, SHA Dan-dan. ANALYZE ON PM2.5 AND ITS MAIN CHEMICAL COMPOSITION DURING TYPICAL HEAVY AIR POLLUTION IN AUTUMN AND WINTER IN CHANGSHU[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 142-147,161. doi: 10.13205/j.hjgc.202003024
  • Cited by

    Periodical cited type(2)

    1. 王越. 矿化垃圾强化剩余污泥暗发酵产氢. 中国给水排水. 2024(05): 105-110 .
    2. 项显超,蔡嘉瑞,甄宗傲,李晓东. 填埋场开采及矿化垃圾资源化利用现状. 环境卫生工程. 2024(03): 16-27 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-040102030
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 17.5 %FULLTEXT: 17.5 %META: 72.6 %META: 72.6 %PDF: 9.9 %PDF: 9.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 16.4 %其他: 16.4 %其他: 1.1 %其他: 1.1 %China: 0.2 %China: 0.2 %Seattle: 0.2 %Seattle: 0.2 %[]: 0.2 %[]: 0.2 %上海: 0.9 %上海: 0.9 %东莞: 0.2 %东莞: 0.2 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.4 %乌鲁木齐: 0.4 %佛山: 0.4 %佛山: 0.4 %保定: 0.2 %保定: 0.2 %北京: 12.7 %北京: 12.7 %南京: 1.1 %南京: 1.1 %南通: 0.9 %南通: 0.9 %台州: 1.8 %台州: 1.8 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 0.4 %天津: 0.4 %太原: 0.4 %太原: 0.4 %宁波: 0.2 %宁波: 0.2 %常德: 0.2 %常德: 0.2 %广州: 0.7 %广州: 0.7 %张家口: 0.7 %张家口: 0.7 %徐州: 0.2 %徐州: 0.2 %成都: 1.5 %成都: 1.5 %昆明: 1.3 %昆明: 1.3 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %杭州: 0.2 %杭州: 0.2 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.2 %沈阳: 0.2 %济宁: 1.3 %济宁: 1.3 %济源: 0.4 %济源: 0.4 %深圳: 0.4 %深圳: 0.4 %温哥华: 0.4 %温哥华: 0.4 %湖州: 0.4 %湖州: 0.4 %漯河: 0.9 %漯河: 0.9 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 43.6 %芒廷维尤: 43.6 %芝加哥: 0.4 %芝加哥: 0.4 %西宁: 0.9 %西宁: 0.9 %西安: 1.1 %西安: 1.1 %贵阳: 0.2 %贵阳: 0.2 %运城: 2.2 %运城: 2.2 %遵义: 0.2 %遵义: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.1 %郑州: 1.1 %雷德蒙德: 0.2 %雷德蒙德: 0.2 %其他其他ChinaSeattle[]上海东莞临汾乌鲁木齐佛山保定北京南京南通台州哈尔滨天津太原宁波常德广州张家口徐州成都昆明晋城朝阳杭州武汉沈阳济宁济源深圳温哥华湖州漯河石家庄芒廷维尤芝加哥西宁西安贵阳运城遵义邯郸郑州雷德蒙德

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (397) PDF downloads(26) Cited by(2)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return