Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
Wang Peng Wang Xiaofeng Wu Guiwu, . RESEARCH ON GROUNDWATER POLLUTION IN AN INDUSTRIAL SITE IN THE UPPERCAMBRIAN STRATA[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(6): 35-38. doi: 10.13205/j.hjgc.201506008
Citation: REN Xiaoyu, LI Yinghua, LI Haibo, DENG Wenhe, NAN Ruibin. TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 27-33,80. doi: 10.13205/j.hjgc.202202005

TOXICITY OF SILVER NANOPARTICLES TO ACHROMOBACTER DENITRIFICANS

doi: 10.13205/j.hjgc.202202005
  • Received Date: 2020-11-26
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • The indoor culture method was selected to study the toxic mechanism of AgNPs to Achromobacter denitrificans and the effects of silver nanoparticles on the growth inhibition, ammoniation, assimilation and absorption of NH4+-N, cell membrane surface structure and the accumulation of the reactive oxygen species. The study found that AgNPs could inhibit bacterial growth, and the inhibitory effect was positively related to concentration and exposure time. In the nitrification medium supplemented with 10 mg/LAgNPs, the growth inhibition rate of Achromobacter denitrificans reached 38.2% after 12 h, while the growth inhibition rate was only 11.5% when 1 mg/LAgNPs was added. Under different AgNPs exposure concentrations, the growth inhibition rates tended to be stable after 4~6 h. The biochemical activity of bacteria after exposure to AgNPs decreased. When the dosage of AgNPs increased from 1 mg/L to 10 mg/L, the NH+4-N generation rate decreased by 25.3%, from 2.77 mg/(L·h) to 2.07 mg/(L·h); NH4+-N assimilation rate decreased by 69.1%, from 5.52 mg/(L·h) to 1.71 mg/(L·h). Besides, pH was an important factor affecting the toxicity. Both weak acid(pH=5.0) and weak alkaline(pH=9.0) were not conducive to bacterial survival. Through the analysis of the mechanism of toxicity, we found that AgNPs can cause the depression and rupture of the cell membrane surface, the leakage of substances in the membrane, and the accumulation of reactive oxygen species in the cells.
  • [1]
    VANCE M E,TODD K,VEJERANO E P,et al.Nanotechnology in the real world:redeveloping the nanomaterial consumer products inventory[J].Blstn Journal of Nanotechnology,2015,6:69-80.
    [2]
    STENSBERG M C,WEI Q S,MCLAMORE E S,et al.Toxicological studies on silver nanoparticles:challenges and opportunities in assessment,monitoring and imaging[J].Nanomedicine,2011,6(5):879-898.
    [3]
    CHEMOUSOVAS S,EPPLE M.Silver as antibacterial agent:ion,nanoparticle,and metal[J].Angewandte Chemie International Edition,2013,44(6):1636-1653.
    [4]
    LIU J Y,SONSHIN D A,SHERVANI S,et al.Controlled release of biologically active silver from nanosilver surfaces[J].ACS Nano,2010,4(11):6903-6913.
    [5]
    HWANG E T,JIN H L,YUN J C,et al.Analysis of the toxic mode of action of silver nanoparticles using stress-specific bioluminescent bacteria[J].Small,2010,4(6):746-750.
    [6]
    PARK E J,YI J,KIM Y,et al.Silver nanoparticles induce cytotoxicity by a Trojan-horse type mechanism[J].Toxicology in Vitro,2010,24(3):872-878.
    [7]
    JIANG X M,MICHU T,WANG L M,et al.Fast intracellular dissolution and persistent cellular uptake of silver nanoparticles in CHO-K1 cells:implication for cytotoxicity[J].Nanotoxicology,2015,9(2):181-189.
    [8]
    CHOI O,HU Z.Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria[J].Environmental Science & Technology,2008,42(12):4583-4588.
    [9]
    范俊楠,赵建伟,朱端卫.湖泊氮素氧化及脱氮过程研究进展[J].生态学报,2012,32(15):4924-4931.
    [10]
    LIANG Z H,DAS A,HU Z Q.Bacterial response to a shock load of nanosilver in an activated sludge treatment system[J].Water Research,2010,44(18):5432-5438.
    [11]
    YANG Y,CHEN Q,WALL J D,et al.Potential nanosilver impact on anaerobic digestion at moderate silver concentrations[J].Water Research,2012,46(4):1176-1184.
    [12]
    伍玲丽,张晓雪,舒昆慧,等.两种粒径纳米银对Nitrosomonas europaea的毒性效应[J].中国环境科学,2019,39(10):4401-4408.
    [13]
    YANG Y,WANG J,XIU Z M,et al.Impacts of silver nanoparticles on cellular and transcriptional activity of nitrogen-cycling bacteria[J].Environmental Toxicology and Chemistry,2013,32(7):1488-1494.
    [14]
    DONG B,LIU G F,ZHOU J T,et al.Transformation of silver ions to silver nanoparticles mediated by humic acid under dark conditions at ambient temperature[J].Journal of Hazardous Materials,2020,383(Feb.5):121190.1-121190.9.
    [15]
    PERETYAZHKO T S,ZHANG Q B,COLVIN V L.Size-controlled dissolution of silver nanoparticles at neutral and acidic pH conditions:kinetics and size changes[J].Environmental Science & Technology,2014,48(20):11954-11961.
    [16]
    BORCH T,KRETZSCHMAR R,KAPPLER A,et al.Biogeochemical redox processes and their impact on contaminant dynamics[J].Environmental Science & Technology,2010,44(1):15-23.
    [17]
    RASOOL K,LEE D S.Inhibitory effects of silver nanoparticles on removal of organic pollutants and sulfate in an anaerobic biological wastewater treatment process[J].Journal of Nanoscience & Nanotechnology,2016,16(5):4456-4463.
    [18]
    YUAN Z H,LI J W,CUI L,et al.Interaction of silver nanoparticles with pure nitrifying bacteria[J].Chemosphere,2013,90(4):1404-1411.
    [19]
    LOO S L,KRANTZ W B,FANE A G,et al.Bactericidal mechanisms revealed for rapid water disinfection by superabsorbent cryogels decorated with silver nanoparticles[J].Environmental Science & Technology:ES&T,2015,49(4):2010-2018.
    [20]
    GORDON O,SLENTERS T V,BRUNETTO P S,et al.Silver coordination polymers for prevention of implant infection:thiol interaction,impact on respiratory chain enzymes,and hydroxyl radical induction[J].Antimicrobial Agents and Chemotherapy,2010,54(10):4208-4218.
    [21]
    YANG E J,KIM S,KIM J S,et al.Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles[J].Biomaterials,2012,33(28):6858-6867.
  • Relative Articles

    [1]LI Qingpo, PENG Jianping, LIU Xingjian, WANG Yaowu, DI Yuezhong. Carbon emission analysis of primary aluminum production in China based on energy consumption[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 21-30. doi: 10.13205/j.hjgc.202501003
    [2]DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006
    [3]GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004
    [4]WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008
    [5]WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016
    [6]WANG Ning, HAN Chengyu, ZHANG Yang, GU Zhaolin. REGIONAL CARBON EMISSION PEAKING BASED ON THRESHOLD-STIRPAT EXTENSION MODEL: A CASE STUDY ON EAST CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 154-162. doi: 10.13205/j.hjgc.202405020
    [7]CHEN Chen, LI Wei, ZHAI Mengyu, BAO Zhe, WANG Zhenyu, ZHU Liangliang. IMPACT OF INTER-REGIONAL TRADE ON SHANGHAI’S ENERGY-RELATED CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 245-252,259. doi: 10.13205/j.hjgc.202310028
    [8]MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011
    [9]LI Jianyuan, SUN Yunan, HUANG Jiale, CHEN Qijing, JIA Yue, GAO Yule, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. CARBON EMISSION ANALYSIS OF WASTE BIODEGRADABLE PLASTICS BY DIFFERENT DISPOSAL TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 124-132. doi: 10.13205/j.hjgc.202309015
    [10]REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023
    [11]WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021
    [12]YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019
    [13]WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017
    [14]WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014
    [15]WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010
    [16]ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002
    [17]LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011
    [18]YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008
    [19]Zhang Feng Yin Xiuqing Dong Huizhong, . APPLICATION OF COMBINATION GREY MODEL IN CARBON EMISSIONS PREDICTION IN SHANDONG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 147-152. doi: 10.13205/j.hjgc.201502033
    [20]STUDY OF CARBON EMISSION UNDER CHANGE IN LAND USE PATTERNS IN TAIHANG MOUNTAIN AREA OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 133-135. doi: 10.13205/j.hjgc.201412024
  • Cited by

    Periodical cited type(6)

    1. 狄卫民,黄道银. 河南省能源消费碳排放分析与情景预测. 中国能源. 2024(Z1): 129-141 .
    2. 袁长伟,彭琛. 城市公交碳排放效率评价及驱动因素分析. 长安大学学报(自然科学版). 2024(04): 139-148 .
    3. 王昭,吴金卓. 东北三省交通行业碳排放脱钩状态及驱动因素分析. 交通科技与经济. 2024(05): 73-80 .
    4. 关同恩. “双碳”背景下西部地区交通运输发展机遇与挑战. 中国航务周刊. 2024(50): 57-59 .
    5. 张思远,甘京京,张任涛,徐晨烨,沈忱思,郭茹,钱琴芳,唐俊松,李方. 长三角生态绿色一体化发展示范区纺织行业碳排放驱动因素及其脱钩效应分析. 环境科学. 2024(12): 6796-6805 .
    6. 朱健齐,黄希颖,谭晓雯,张潇. 绿色低碳技术创新视角下影响城市经济增长与碳排放脱钩的因素和路径研究——以广东省21个地市为例. 科技管理研究. 2024(24): 191-201 .

    Other cited types(10)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.2 %FULLTEXT: 6.2 %META: 91.0 %META: 91.0 %PDF: 2.8 %PDF: 2.8 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 24.1 %其他: 24.1 %其他: 0.7 %其他: 0.7 %东莞: 4.8 %东莞: 4.8 %临汾: 0.7 %临汾: 0.7 %伊利诺伊州: 0.7 %伊利诺伊州: 0.7 %保定: 0.7 %保定: 0.7 %北京: 3.4 %北京: 3.4 %十堰: 0.7 %十堰: 0.7 %南京: 1.4 %南京: 1.4 %台州: 1.4 %台州: 1.4 %嘉峪关: 2.1 %嘉峪关: 2.1 %大同: 1.4 %大同: 1.4 %天津: 2.8 %天津: 2.8 %宣城: 0.7 %宣城: 0.7 %常德: 0.7 %常德: 0.7 %延安: 0.7 %延安: 0.7 %张家口: 0.7 %张家口: 0.7 %扬州: 2.1 %扬州: 2.1 %昆明: 0.7 %昆明: 0.7 %晋城: 0.7 %晋城: 0.7 %杭州: 2.1 %杭州: 2.1 %格兰特县: 0.7 %格兰特县: 0.7 %济南: 0.7 %济南: 0.7 %温州: 1.4 %温州: 1.4 %湖州: 0.7 %湖州: 0.7 %漯河: 4.1 %漯河: 4.1 %福州: 0.7 %福州: 0.7 %芒廷维尤: 19.3 %芒廷维尤: 19.3 %芝加哥: 2.8 %芝加哥: 2.8 %衢州: 0.7 %衢州: 0.7 %西宁: 4.8 %西宁: 4.8 %贵阳: 1.4 %贵阳: 1.4 %运城: 3.4 %运城: 3.4 %遵义: 0.7 %遵义: 0.7 %邯郸: 0.7 %邯郸: 0.7 %郑州: 0.7 %郑州: 0.7 %重庆: 1.4 %重庆: 1.4 %长沙: 2.1 %长沙: 2.1 %青岛: 0.7 %青岛: 0.7 %其他其他东莞临汾伊利诺伊州保定北京十堰南京台州嘉峪关大同天津宣城常德延安张家口扬州昆明晋城杭州格兰特县济南温州湖州漯河福州芒廷维尤芝加哥衢州西宁贵阳运城遵义邯郸郑州重庆长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (370) PDF downloads(13) Cited by(16)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return