Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LI Anna, WANG Hui, LIU Qiangnan, LI Taiping. DISTRIBUTION CHARACTERISTICS AND RISK ASSESSMENT OF SOIL POLLUTANTS IN AN EXPLOSION SITE OF A CHEMICAL PLANT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 189-198. doi: 10.13205/j.hjgc.202211027
Citation: HAN Han, WANG Xiao, YIN Mengqiuzi, ZHANG Qiwu, HE Xiaoman. MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 100-105,112. doi: 10.13205/j.hjgc.202202016

MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL

doi: 10.13205/j.hjgc.202202016
  • Received Date: 2021-03-06
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • Mechanochemical methods were used to remediate polycyclic aromatic hydrocarbons(PAHs) contaminated soil. The effects of ball-milling time and ball-milling speed on the removal rate of pyrene in soil were studied. When the milling time was 6 h and the milling speed was 500 r/min, the removal rate of pyrene in the soil was 93.78%. The synthetic soil samples using SiO2 before and after ball milling were analyzed by GC-MS, FT-IR spectra and Raman spectra. The degradation pathway and mechanism of pyrene were revealed as follows: the benzene rings of pyrene were destroyed, and some of the intermediate products were PAHs with fewer benzene rings and alkanes with shorter carbon chains, and some were carbonized into graphite and amorphous carbon. The residual concentration of pyrene and fluoranthene in soil was 21.45, 35.68 mg/kg when the site contaminated soil was remediation by mechanochemical method. Mechanochemical method provides a possible method and considerable application prospect in remediation of PAHs contaminated soil.
  • [1]
    马强,林爱军,马薇,等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展[J].生态毒理学报,2008,3(1):1-8.
    [2]
    杨勇,张蒋维,陈恺,等.化学氧化法治理焦化厂PAHs污染土壤[J].环境工程学报,2016,10(1):427-431.
    [3]
    佚名.全国土壤污染状况调查公报[N].国土资源报,2014-04-18.
    [4]
    钱林波,元妙新,陈宝梁,等.固定化微生物技术修复PAHs污染土壤的研究进展[J].环境科学,2012,33(5):1767-1776.
    [5]
    陆光华,万蕾,苏瑞莲,等.石油烃类污染土壤的生物修复技术研究进展[J].生态环境,2003,12 (2):220-223.
    [6]
    KUPPUSAMY S,THAVAMANI P,VENKATESWARLU K,et al.Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints,emerging trends and future directions[J].Chemosphere,2017,168:944-968.
    [7]
    TAKACS L.The historical development of mechanochemistry[J].Chemical Society Reviews,2013,42(18):7649-7659.
    [8]
    SUI H,RONG Y Z,SONG J,et al.Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill[J].Journal of Hazardous Materials,2018,342:201-209.
    [9]
    NOMURA YUGO,NAKAI SATOSHI,HOSOMI MASAAKI.Elucidation of degradation mechanism of dioxins during mechanochemical treatment[J].Environmental Science & Technology,2005,39(10):3799-3804.
    [10]
    ZHAO Z H,NI M J,LI X D,et al.Combined mechanochemical and thermal treatment of PCBs contaminated soil[J].RSC Advances,2017,7(34):21180-21186.
    [11]
    TANAKA YASUMITSU,ZHANG Q W,FUMIO SAITO,et al.Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals[J].Chemosphere,2005,60(7):939-943.
    [12]
    IN WOOK NAH,KYUNG-YUB HWANGYONG-GUN SHUL.Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs)[Chemosphere,2008,73(1):138-141.
    [13]
    TONGAMP WILLLIAM,ZHANG Q W,SAITO FUMIO.Mechanochemical decomposition of PVC by using La2O3 as additive[J].Journal of Hazardous Materials,2006,137(2):1226-1230.
    [14]
    ZHANG Q W,MATSUMOTO HIROKI,SAITO FUMIO,et al.Debromination of hexabromobenzene by its co-milling with CaO[J].Chemosphere,2002,48(8):787-793.
    [15]
    PAOLA DI LEO,MARIA DONATA R PIZZIGALLO,VALERIA ANCONA,et al.Mechanochemical degradation of pentachlorophenol onto birnessite[J].Journal of Hazardous Materials,2013,303(10):244-245.
    [16]
    HUANG J,WANG H Z,ZHANG S Y,et al.Study of degradation mechanism of dechlorane plus by mechanochemical reaction with aluminum and quartz sand[J].Chemical Engineering Journal,2016,292:98-104.
    [17]
    SHU SAEKI,LEE JAERYEONG,ZHANG Q W,et al.Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product[J].International Journal of Mineral Processing,2004,74:373-378.
    [18]
    ZHANG Q W,MATSUMOTO HIROKI,SAITO FUMIO,et al.Debromination of hexabromobenzene by its co-grinding with CaO[J].Chemosphere,2002,48(8):787-793.
    [19]
    WANG N,LV H Q,ZHOU Y Q,et al.Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate[J].Environmental Science & Technology,2019,53(14):8302-8313.
    [20]
    张冬格,隋红,宋静,等.CaO机械化学法去除土壤中DDTs的工艺参数优化[J].环境科学研究,2016,29(9):1336-1343.
    [21]
    毛琼晶,陆胜勇,卫樱蕾,等.水平球磨机械化学法处置多氯联苯污染土壤的试验[J].环境化学,2016,35(4):607-614.
    [22]
    WANG H Z,HUANG J S,HUANG J,et al.Mechanochemical remediation of PCB contaminated soil[J].Chemosphere,2017,168:333-340.
    [23]
    LI X Y,KONG L X,LIN X,et al.The effect of concentrations and properties of phenanthrene,pyrene,and benzo(a)pyrene on desorption in contaminated soil aged for 1 year[J].Journal of Soil & Sediments,2013,13(2):375-382.
    [24]
    YAN J H,PENG Z,LU S Y,et al.Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration[J].Journal of Hazardous Materials,2007,147(1):652-657.
    [25]
    占新华,周立祥,杨红,等.水溶性有机物与多环芳烃结合特征的红外光谱学研究[J].土壤学报,2007,44(1):47-53.
    [26]
    孙振亚,陈和生,邵景昌.八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报,2011,30(4):934-937.
    [27]
    ZHANG W,HUANG J,XU F Y,et al.Mechanochemical destruction of pentachloronitrobenzene with reactive iron powder[J].Journal of Hazardous Materials,2011,198:275-281.
    [28]
    CAGNETTA G,ROBERTSON J,HUANG J,et al.Mechanochemical destruction of halogenated organic pollutants:a critical review[J].Journal of Hazardous Materials,2016,313:85-102.
    [29]
    LESLIE D.FIELD,SEVER STERNHELL HOWARD V.Wilton.Mechanochemistry of some hydrocarbons[J].Tetrahedron,1997,53(11):4051-4062.
    [30]
    ZHANG W,WANG H Z,HUANG J,et al.Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand[J].Chemical Engineering Journal,2014,239:185-191.
    [31]
    MASAHIRO HASEGAWA,TATEAKI OGATA,MASATAKE SATO.Mechano-radicals produced from ground quartz and quartz glass[J].Powder Technology,1995,85:269-274.
    [32]
    FAN G,LIU X,LI X,et al.Mechanochemical treatment with CaO-activated PDS of HCB contaminated soils[J].Chemosphere,2020,257:127207.
  • Relative Articles

    [1]DAN Aojiang, YAO Junqin, JIA Yangyang, ZHAO Xinwei, CHEN Yinguang. EFFECT OF ADDING METHANOL ON MICROBIAL COMMUNITIES AND ARGs IN A WASTEWATER TREATMENT PLANT OF AN INDUSTRIAL PARK[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 124-131. doi: 10.13205/j.hjgc.202409012
    [2]FU Jiachen, WANG Jing, ZHAO Yiying, WEN Huiyan, AN Xiao, CHEN Yucheng, ZHOU Zhongbo. NITROGEN REMOVAL PERFORMANCE BY ALGAL-DRIVEN AEROBIC METHANE OXIDATION COUPLED WITH DENITRIFICATION IN A PHOTO-BIOFILM REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 18-25. doi: 10.13205/j.hjgc.202308003
    [3]ZHANG Chi, SHA Hongjü, WANG Chao, LÜ Ze, HU Xiaomin. MICROBIAL COMMUNITY STRUCTURE ENHANCEMENT BY ELECTRIC FIELD AT ROOM TEMPERATURE AND HIGH NITROGEN LOAD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 39-44. doi: 10.13205/j.hjgc.202305006
    [4]MEN Yan, LIU Lingjie, ZHU Yaxin, BI Yanmeng, MENG Fansheng, YU Jingjie, WANG Shaopo. EFFECT OF ORGANIC MATTER CONCENTRATION VARIATION ON NITROGEN REMOVAL PERFORMANCE AND BACTERIA COMMUNITY STRUCTURE IN A HYBRID SBR ANAMMOX SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 83-90. doi: 10.13205/j.hjgc.202308011
    [5]YAN Duosen, YANG Wen, LI Shanshan, JIAO Yan, ZHANG Guodong, CHEN Qinghua, LI Yun. EFFECT OF SULFAMETHOXAZOLE ON NITROGEN REMOVAL AND MICROBIAL COMMUNITY OF SEQUENCING BATCH BIOREACTORS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(10): 15-23,70. doi: 10.13205/j.hjgc.202210003
    [6]WANG Yan, LI Ji, ZHI Yao, ZHOU Yu, ZHENG Kai-kai, WANG Xiao-fei. DENITRIFICATION ENHANCEMENT EFFECT AND MICROBIAL FLORA ANALYSIS OF A NEW BIOMASS CARBON SOURCE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(9): 63-68,117. doi: 10.13205/j.hjgc.202209008
    [7]LUO Xiao-nan, YANG Yi-qing, ZHANG Nan, MENG Fan-gang. PERFORMANCE OF NITROGEN REMOVAL AND MICROBIAL INTERACTION IN A TWO-STAGE DYNAMIC MEMBRANE BIOREACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 108-115. doi: 10.13205/j.hjgc.202107013
    [8]YIN Hao-shuai, HUANG Kai, WANG Qing-qing, LI Shi-feng. ANALYSIS ON CHANGE OF MICROBIAL COMMUNITY IN AAO BIOCHEMICAL SYSTEM OF A SEWAGE TREATMENT PLANT UNDER HIGH SALINITY ENVIRONMENT[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(3): 68-74. doi: 10.13205/j.hjgc.202103010
    [9]FU Kun-ming, FU Si-bo, LIU Fan-qi, QIU Fu-guo, CAO Xiu-qin. EFFECT OF DIFFERENT CARBON SOURCES ON N2O RELEASE IN DENITRIFICATION PROCESS OF A SBR REACTOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 56-62. doi: 10.13205/j.hjgc.202109009
    [10]HAN Yu-lin, SHI Ling-dong, ZHAO He-ping. RESEARCH ON PROMOTION OF SELENIUM REDUCTION BY DENITRIFYING BACTERIA IN WASTEWATER AND ITS APPLICATION EXPLORATION[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(11): 62-68,88. doi: 10.13205/j.hjgc.202111007
    [11]ZHAO Min-juan, SHEN Yuan-yuan, GAO Tian-peng, YAN Jia-cong, YANG Ji-huan. EFFECT OF BROMINATED FLAME RETARDANT ON BIOLOGICAL NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 49-53,111. doi: 10.13205/j.hjgc.202012009
    [12]ZHAO Wan-qing, LI Bo-lin, WANG Wei, LI Ye, WANG Heng, WANG Yue, LIANG Ya-nan. PERFORMANCE OF A GRANULAR-FLOCCULENT SLUDGE COUPLING SINGLE-STAGE AUTOTROPHIC NITROGEN REMOVAL SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 43-47,199. doi: 10.13205/j.hjgc.202009007
    [13]CHEN Jin-yuan, LIU Xue-wen, LV Ju-feng, LV Bo-sheng, WEI Xiu-zhen. EFFECT OF BIOCHAR ON COMPOSITION OF SMP AND EPS IN ACTIVATED SLUDGE AND NITROGEN AND PHOSPHORUS REMOVAL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(9): 133-138,207. doi: 10.13205/j.hjgc.202009022
    [14]ZHOU Yuan, ZHI Li-ling, ZHENG Kai-kai, WANG Yan, LI Ji. INFLUENCING FACTORS AND OPTIMIZATION ANALYSIS OF DENITRIFICATION RATE IN URBAN WASTEWATER TREATMENT PLANTS[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(7): 100-108. doi: 10.13205/j.hjgc.202007016
    [15]MA Ye-shu, YAO Jun-qin, WANG Xi-yuan, LUO Yuan-shuang, ZHANG Meng, CHEN Yin-guang. MICROBIAL COMMUNITY STRUCTURE OF ACTIVATED SLUDGE IN OXIDATION DITCH PROCESS IN ARID AND COLD REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 58-62,50. doi: 10.13205/j.hjgc.202003010
    [18]Zhang Weizheng Chen Yongchun Liu Bingjun Li Zhenzhen Tao Xianchao Shi Xianyang, . MATHEMATICAL SIMULATION OF SIMULTANEOUS DENITRIFICATION AND METHANOGENESIS WITH SODIUM ACETATE AS THE ELECTRON DONOR[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(4): 63-69. doi: 10.13205/j.hjgc.201504014
  • Cited by

    Periodical cited type(3)

    1. 孙冬梅,那守海. 旅游活动碳排放管理评价指标体系构建及实证研究. 生态经济. 2025(03): 150-157 .
    2. 奥勇,吴京盛,汪雅,张亦恒,李雪娇. 中国旅游环境承载力时空演化与障碍度分析. 生态经济. 2024(10): 126-135+189 .
    3. 潘云龙,钟颜,傅承哲. “横琴驱动”:旅游容量视角下粤港澳大湾区旅游增长模式探析——以珠海市为例. 城市观察. 2023(04): 16-28+160-161 .

    Other cited types(0)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 12.7 %FULLTEXT: 12.7 %META: 85.2 %META: 85.2 %PDF: 2.2 %PDF: 2.2 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.9 %其他: 17.9 %China: 1.7 %China: 1.7 %Switzerland: 1.3 %Switzerland: 1.3 %上海: 0.9 %上海: 0.9 %东莞: 0.4 %东莞: 0.4 %临汾: 0.4 %临汾: 0.4 %北京: 2.2 %北京: 2.2 %十堰: 0.4 %十堰: 0.4 %南京: 0.4 %南京: 0.4 %厦门: 0.4 %厦门: 0.4 %台州: 1.3 %台州: 1.3 %合肥: 0.4 %合肥: 0.4 %哈尔滨: 0.4 %哈尔滨: 0.4 %天津: 2.6 %天津: 2.6 %太原: 0.9 %太原: 0.9 %宁波: 0.4 %宁波: 0.4 %安康: 0.9 %安康: 0.9 %宜春: 0.4 %宜春: 0.4 %常德: 0.4 %常德: 0.4 %广州: 1.7 %广州: 1.7 %张家口: 0.9 %张家口: 0.9 %成都: 1.3 %成都: 1.3 %拉贾斯坦邦: 0.4 %拉贾斯坦邦: 0.4 %无锡: 0.4 %无锡: 0.4 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.4 %朝阳: 0.4 %本溪: 0.4 %本溪: 0.4 %桂林: 2.2 %桂林: 2.2 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.4 %沈阳: 0.4 %法兰克福: 1.3 %法兰克福: 1.3 %济南: 0.9 %济南: 0.9 %济源: 0.9 %济源: 0.9 %湖州: 0.4 %湖州: 0.4 %滨州: 0.4 %滨州: 0.4 %漯河: 1.7 %漯河: 1.7 %珠海: 0.4 %珠海: 0.4 %石家庄: 0.4 %石家庄: 0.4 %秦皇岛: 0.4 %秦皇岛: 0.4 %芒廷维尤: 28.8 %芒廷维尤: 28.8 %芝加哥: 0.9 %芝加哥: 0.9 %苏州: 0.9 %苏州: 0.9 %西宁: 10.0 %西宁: 10.0 %西安: 2.2 %西安: 2.2 %贵阳: 0.4 %贵阳: 0.4 %运城: 3.5 %运城: 3.5 %遵义: 0.4 %遵义: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 1.3 %郑州: 1.3 %重庆: 0.4 %重庆: 0.4 %长治: 0.4 %长治: 0.4 %其他ChinaSwitzerland上海东莞临汾北京十堰南京厦门台州合肥哈尔滨天津太原宁波安康宜春常德广州张家口成都拉贾斯坦邦无锡晋城朝阳本溪桂林武汉沈阳法兰克福济南济源湖州滨州漯河珠海石家庄秦皇岛芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州重庆长治

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (224) PDF downloads(18) Cited by(3)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return