Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
LIU Jinhe, ZHENG Yuna, LIU Peng, LIN Kuangfei, HUANG Kai, ZHOU Changrui. SIMULATION OF POLLUTION CHARACTERISTICS AND MIGRATION LAW OF CADMIUM IN SOIL OF A TYPICAL ELECTRONIC WASTE DISMANTLING AREA IN TAIZHOU[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 150-158. doi: 10.13205/j.hjgc.202408018
Citation: HAN Han, WANG Xiao, YIN Mengqiuzi, ZHANG Qiwu, HE Xiaoman. MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 100-105,112. doi: 10.13205/j.hjgc.202202016

MECHANOCHEMICAL REMEDIATION OF NON-DEGRADABLE PYRENE CONTAMINATED SOIL

doi: 10.13205/j.hjgc.202202016
  • Received Date: 2021-03-06
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • Mechanochemical methods were used to remediate polycyclic aromatic hydrocarbons(PAHs) contaminated soil. The effects of ball-milling time and ball-milling speed on the removal rate of pyrene in soil were studied. When the milling time was 6 h and the milling speed was 500 r/min, the removal rate of pyrene in the soil was 93.78%. The synthetic soil samples using SiO2 before and after ball milling were analyzed by GC-MS, FT-IR spectra and Raman spectra. The degradation pathway and mechanism of pyrene were revealed as follows: the benzene rings of pyrene were destroyed, and some of the intermediate products were PAHs with fewer benzene rings and alkanes with shorter carbon chains, and some were carbonized into graphite and amorphous carbon. The residual concentration of pyrene and fluoranthene in soil was 21.45, 35.68 mg/kg when the site contaminated soil was remediation by mechanochemical method. Mechanochemical method provides a possible method and considerable application prospect in remediation of PAHs contaminated soil.
  • [1]
    马强,林爱军,马薇,等.土壤中总石油烃污染(TPH)的微生物降解与修复研究进展[J].生态毒理学报,2008,3(1):1-8.
    [2]
    杨勇,张蒋维,陈恺,等.化学氧化法治理焦化厂PAHs污染土壤[J].环境工程学报,2016,10(1):427-431.
    [3]
    佚名.全国土壤污染状况调查公报[N].国土资源报,2014-04-18.
    [4]
    钱林波,元妙新,陈宝梁,等.固定化微生物技术修复PAHs污染土壤的研究进展[J].环境科学,2012,33(5):1767-1776.
    [5]
    陆光华,万蕾,苏瑞莲,等.石油烃类污染土壤的生物修复技术研究进展[J].生态环境,2003,12 (2):220-223.
    [6]
    KUPPUSAMY S,THAVAMANI P,VENKATESWARLU K,et al.Remediation approaches for polycyclic aromatic hydrocarbons (PAHs) contaminated soils:technological constraints,emerging trends and future directions[J].Chemosphere,2017,168:944-968.
    [7]
    TAKACS L.The historical development of mechanochemistry[J].Chemical Society Reviews,2013,42(18):7649-7659.
    [8]
    SUI H,RONG Y Z,SONG J,et al.Mechanochemical destruction of DDTs with Fe-Zn bimetal in a high-energy planetary ball mill[J].Journal of Hazardous Materials,2018,342:201-209.
    [9]
    NOMURA YUGO,NAKAI SATOSHI,HOSOMI MASAAKI.Elucidation of degradation mechanism of dioxins during mechanochemical treatment[J].Environmental Science & Technology,2005,39(10):3799-3804.
    [10]
    ZHAO Z H,NI M J,LI X D,et al.Combined mechanochemical and thermal treatment of PCBs contaminated soil[J].RSC Advances,2017,7(34):21180-21186.
    [11]
    TANAKA YASUMITSU,ZHANG Q W,FUMIO SAITO,et al.Dependence of mechanochemically induced decomposition of mono-chlorobiphenyl on the occurrence of radicals[J].Chemosphere,2005,60(7):939-943.
    [12]
    IN WOOK NAH,KYUNG-YUB HWANGYONG-GUN SHUL.Effect of metal and glycol on mechanochemical dechlorination of polychlorinated biphenyls (PCBs)[Chemosphere,2008,73(1):138-141.
    [13]
    TONGAMP WILLLIAM,ZHANG Q W,SAITO FUMIO.Mechanochemical decomposition of PVC by using La2O3 as additive[J].Journal of Hazardous Materials,2006,137(2):1226-1230.
    [14]
    ZHANG Q W,MATSUMOTO HIROKI,SAITO FUMIO,et al.Debromination of hexabromobenzene by its co-milling with CaO[J].Chemosphere,2002,48(8):787-793.
    [15]
    PAOLA DI LEO,MARIA DONATA R PIZZIGALLO,VALERIA ANCONA,et al.Mechanochemical degradation of pentachlorophenol onto birnessite[J].Journal of Hazardous Materials,2013,303(10):244-245.
    [16]
    HUANG J,WANG H Z,ZHANG S Y,et al.Study of degradation mechanism of dechlorane plus by mechanochemical reaction with aluminum and quartz sand[J].Chemical Engineering Journal,2016,292:98-104.
    [17]
    SHU SAEKI,LEE JAERYEONG,ZHANG Q W,et al.Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product[J].International Journal of Mineral Processing,2004,74:373-378.
    [18]
    ZHANG Q W,MATSUMOTO HIROKI,SAITO FUMIO,et al.Debromination of hexabromobenzene by its co-grinding with CaO[J].Chemosphere,2002,48(8):787-793.
    [19]
    WANG N,LV H Q,ZHOU Y Q,et al.Complete defluorination and mineralization of perfluorooctanoic acid by a mechanochemical method using alumina and persulfate[J].Environmental Science & Technology,2019,53(14):8302-8313.
    [20]
    张冬格,隋红,宋静,等.CaO机械化学法去除土壤中DDTs的工艺参数优化[J].环境科学研究,2016,29(9):1336-1343.
    [21]
    毛琼晶,陆胜勇,卫樱蕾,等.水平球磨机械化学法处置多氯联苯污染土壤的试验[J].环境化学,2016,35(4):607-614.
    [22]
    WANG H Z,HUANG J S,HUANG J,et al.Mechanochemical remediation of PCB contaminated soil[J].Chemosphere,2017,168:333-340.
    [23]
    LI X Y,KONG L X,LIN X,et al.The effect of concentrations and properties of phenanthrene,pyrene,and benzo(a)pyrene on desorption in contaminated soil aged for 1 year[J].Journal of Soil & Sediments,2013,13(2):375-382.
    [24]
    YAN J H,PENG Z,LU S Y,et al.Degradation of PCDD/Fs by mechanochemical treatment of fly ash from medical waste incineration[J].Journal of Hazardous Materials,2007,147(1):652-657.
    [25]
    占新华,周立祥,杨红,等.水溶性有机物与多环芳烃结合特征的红外光谱学研究[J].土壤学报,2007,44(1):47-53.
    [26]
    孙振亚,陈和生,邵景昌.八种不同来源二氧化硅的红外光谱特征研究[J].硅酸盐通报,2011,30(4):934-937.
    [27]
    ZHANG W,HUANG J,XU F Y,et al.Mechanochemical destruction of pentachloronitrobenzene with reactive iron powder[J].Journal of Hazardous Materials,2011,198:275-281.
    [28]
    CAGNETTA G,ROBERTSON J,HUANG J,et al.Mechanochemical destruction of halogenated organic pollutants:a critical review[J].Journal of Hazardous Materials,2016,313:85-102.
    [29]
    LESLIE D.FIELD,SEVER STERNHELL HOWARD V.Wilton.Mechanochemistry of some hydrocarbons[J].Tetrahedron,1997,53(11):4051-4062.
    [30]
    ZHANG W,WANG H Z,HUANG J,et al.Acceleration and mechanistic studies of the mechanochemical dechlorination of HCB with iron powder and quartz sand[J].Chemical Engineering Journal,2014,239:185-191.
    [31]
    MASAHIRO HASEGAWA,TATEAKI OGATA,MASATAKE SATO.Mechano-radicals produced from ground quartz and quartz glass[J].Powder Technology,1995,85:269-274.
    [32]
    FAN G,LIU X,LI X,et al.Mechanochemical treatment with CaO-activated PDS of HCB contaminated soils[J].Chemosphere,2020,257:127207.
  • Relative Articles

    [1]ZHAO Xi, WEI Si. DEVELOPMENT OF AN EVALUATION SYSTEM FOR RANKING QUANTITATIVE DETECTION LIST FROM NONTARGET SCREENING OF EMERGING POLLUTANTS IN ENVIRONMENTAL SAMPLES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 81-87. doi: 10.13205/j.hjgc.202407008
    [2]YANG Yong, CHEN Liping, GONG Yanfeng, JIN Chunming, WANG Shilin. EFFECT OF MICROBIAL GROWTH ON PERMEABILITY OF POROUS MEDIA BASED ON MULTI-SCALE METHOD[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(4): 49-54,153. doi: 10.13205/j.hjgc.202304007
    [3]HE Liping, LI Minmin, WU Jianxun, WEI Heng, LI Lina, LIU Xingchang, HE Zhehao, CHEN Yijie, DONG Tianxing, CHEN Shende. APPLICATION OF ELECTRICAL RESISTIVITY TOMOGRAPHY IN EFFECTIVENESS EVALUATION OF REAGENT INJECTION OF IN-SITU SITE REMEDIATION[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 185-191. doi: 10.13205/j.hjgc.202303025
    [4]WANG Xinlong, SUN Pinghe, ZHAO Mingzhe, XING Shikuan, FENG Deshan, TANG Lei. INFLUENCE OF DIFFERENT CONSOLIDATION FACTORS ON MOISTURE CONTENT AND PERMEABILITY OF WASTE SLURRY[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(8): 84-89. doi: 10.13205/j.hjgc.202208011
    [5]ZHENG Kaixuan, HUANG Junlong, LUO Xingshen, WANG Hongtao, CHEN Tan. APPLICATION PROGRESS OF NUMERICAL SIMULATION IN PERMEABLE REATIVE[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 22-30. doi: 10.13205/j.hjgc.202206003
    [6]WANG Jinnan, WU Yufeng, LI Liangzhong, YU Lu, YANG Mengchuan, LI Bin, GUO Lianjie. RESEARCH PROGRESS OF BARRIER TECHNOLOGIES FOR SITE COMBINED HEAVY METAL POLLUTION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(4): 244-253. doi: 10.13205/j.hjgc.202204034
    [7]WANG Yajun, CHEN Tianjing, LI Jinshou. PERMEABILITY CHARACTERISTICS TEST ON WASTEWATER IN UNPLANTED BIORETENTION CELL UNDER CONTINUOUS OPERATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 27-31,51. doi: 10.13205/j.hjgc.202201005
    [8]WU Jun, WANG Yi-yao, MA Yan. ANALYSIS ON RUNOFF COEFFICIENTS OF DIFFERENT IMPERVIOUS UNDERLYING SURFACES BASED ON A NOVEL RUNOFF COLLECTION METHOD FOR CITIES[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(2): 47-52. doi: 10.13205/j.hjgc.202102008
    [9]LI Qin, LIAO Cai-neng, LIAO Ming-xu, PENG Dao-ping, HUANG Tao. MECHANISMS CONTROLLING HYDRAULIC CONDUCTIVITY OF BENTONITE CLAY LINERS WITH BAUXITE LIQUOR[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 148-153. doi: 10.13205/j.hjgc.202101023
    [10]XIANG Jia-jia. GROUNDWATER POLLUTION CONTROL BY CEMENT SOIL BARRIER WALL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(9): 63-68,91. doi: 10.13205/j.hjgc.202109010
    [15]Gong Ming Xu Lezhong, . EXPERIMENT ON SCREENING OF SUITABLE FILLER FOR DYEING WASTEWATER ADVANCED TREATMENT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 51-55?.
    [16]Pu Pengfei. STUDY ON TECHNOLOGY OF MULTI-POLLUTANT OPTIMIZATION NET-EMISSION CONTROL FOR COAL-FIRED POWER PLANT[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(7): 139-143?.
    [17]Gao Kewei, Chen Yixin, Li Yao, Wang Modi. COMPARATIVE ANALYSIS OF HYDRAULIC CONDUCTIVITY MEASURMENTS OF LANDFILLED MSW IN CHINA AND ABROAD[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(5): 136-139. doi: 10.13205/j.hjgc.201505029
  • Cited by

    Periodical cited type(5)

    1. 高玉苗,刘冠军. 土壤气相抽提技术在有机物污染场地中的研究及应用进展. 天津化工. 2024(02): 4-6 .
    2. 李玉萍,樊宝云,董康冉,万金忠,艾英钵,王保田. 热脱附修复石油烃污染土壤室内试验研究. 环境工程. 2024(04): 242-249 . 本站查看
    3. 徐爱峰. 不同水生植物对污染水体中重金属及有机污染物去除效果研究. 精细化工中间体. 2024(03): 60-64 .
    4. 胡阳. 有机污染土壤治理修复技术综述. 广州化工. 2024(19): 143-145 .
    5. 孙建强,徐健,张安平. 相间非平衡态迁移对土壤苯系物修复的影响. 浙江工业大学学报. 2023(04): 466-472 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04051015202530
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 13.0 %FULLTEXT: 13.0 %META: 84.3 %META: 84.3 %PDF: 2.6 %PDF: 2.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.8 %其他: 17.8 %其他: 0.4 %其他: 0.4 %上海: 2.6 %上海: 2.6 %东莞: 0.4 %东莞: 0.4 %保定: 0.9 %保定: 0.9 %北京: 1.7 %北京: 1.7 %南京: 1.7 %南京: 1.7 %台州: 0.4 %台州: 0.4 %大同: 0.9 %大同: 0.9 %天津: 3.0 %天津: 3.0 %宝鸡: 2.6 %宝鸡: 2.6 %常德: 0.9 %常德: 0.9 %广州: 0.4 %广州: 0.4 %张家口: 0.9 %张家口: 0.9 %成都: 0.4 %成都: 0.4 %扬州: 0.4 %扬州: 0.4 %无锡: 2.6 %无锡: 2.6 %昆明: 0.9 %昆明: 0.9 %晋城: 0.4 %晋城: 0.4 %杭州: 2.2 %杭州: 2.2 %榆林: 0.4 %榆林: 0.4 %武汉: 0.4 %武汉: 0.4 %沈阳: 0.9 %沈阳: 0.9 %深圳: 0.4 %深圳: 0.4 %漯河: 1.3 %漯河: 1.3 %濮阳: 0.9 %濮阳: 0.9 %益阳: 0.4 %益阳: 0.4 %石家庄: 0.4 %石家庄: 0.4 %芒廷维尤: 24.8 %芒廷维尤: 24.8 %芝加哥: 7.8 %芝加哥: 7.8 %西宁: 8.3 %西宁: 8.3 %西安: 3.5 %西安: 3.5 %贵阳: 1.3 %贵阳: 1.3 %运城: 2.2 %运城: 2.2 %遵义: 0.4 %遵义: 0.4 %邢台: 0.4 %邢台: 0.4 %邯郸: 0.4 %邯郸: 0.4 %郑州: 0.9 %郑州: 0.9 %重庆: 1.3 %重庆: 1.3 %长沙: 0.9 %长沙: 0.9 %长治: 0.4 %长治: 0.4 %青岛: 0.4 %青岛: 0.4 %其他其他上海东莞保定北京南京台州大同天津宝鸡常德广州张家口成都扬州无锡昆明晋城杭州榆林武汉沈阳深圳漯河濮阳益阳石家庄芒廷维尤芝加哥西宁西安贵阳运城遵义邢台邯郸郑州重庆长沙长治青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (222) PDF downloads(18) Cited by(12)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return