Source Journal of CSCD
Source Journal for Chinese Scientific and Technical Papers
Core Journal of RCCSE
Included in JST China
Volume 40 Issue 2
Apr.  2022
Turn off MathJax
Article Contents
ZHANG Tengyuan, FENG Junxiao, FENG Long. SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 113-119. doi: 10.13205/j.hjgc.202202018
Citation: ZHANG Tengyuan, FENG Junxiao, FENG Long. SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 113-119. doi: 10.13205/j.hjgc.202202018

SIMULATION AND ORTHOGONAL OPTIMIZATION ON PYROLYSIS AND GASIFICATION OF MSW BASED ON ASPEN PLUS

doi: 10.13205/j.hjgc.202202018
  • Received Date: 2021-05-07
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • Pyrolysis and gasification technology, as a harmless treatment method of MSW, has great research significance. The MSW fixed-bed pyrolysis and gasification model was established using Aspen Plus software. The effects of gasification temperature, gasification pressure and air equivalent ratio on the pyrolysis and gasification process of MSW were discussed based on model verification. The quadratic regression orthogonal test method was used to obtain the mathematical relationship between gas yield, gas calorific value, gasification efficiency and process parameters. Matlab software was applied to solve the equation and get the best combination of process parameters. The results showed that with the increase of gasification temperature, the calorific value of gas production increased slightly, and the produced gas yield and gasification efficiency both increased first and then tended to be stable. The air equivalent ratio had the most significant influence on the gasification efficiency, followed by the gasification temperature, and then influence of gasification pressure. When the gasification temperature was 891 ℃, the gasification pressure was 1.01×105 Pa, and the air equivalent ratio was 0.2, the gasification efficiency reached a maximum.
  • loading
  • [1]
    晏卓逸,岳波,高红,等.我国村镇生活垃圾可燃组分基本特征及其时空差异[J].环境科学,2017,38(7):3078-3084.
    [2]
    蒋晓燕,温小乐,罗维.北京城市塑料垃圾年产量的模拟预测及其影响因素分析[J].环境科学学报,2020,40(9):3435-3444.
    [3]
    马占云,姜昱聪,任佳雪,等.生活垃圾无害化处理大气污染物排放清单[J].环境科学,2021,42(3):1333-1342.
    [4]
    郝彦龙,侯成林,付丽霞,等.生活垃圾无害化处理工程设计实例[J].环境工程,2020,38(2):135-139.
    [5]
    钱睿,韩健.北京城市生活垃圾处理转型新思路——垃圾热解气化技术[J].环境工程,2014,32(增刊1):689-692.
    [6]
    齐丽,任玥,刘爱民,等.北京市某垃圾焚烧厂周边大气二噁英污染特征及暴露风险[J].环境科学,2017,38(4):1317-1326.
    [7]
    DIETRICH M,BERT V D B,ANTHONY V B,et al.State-of-the-art of fast pyrolysis in IEA bioenergy member countries[J].Renewable and Sustainable Energy Reviews,2013,20:619-641.
    [8]
    黄付平,黄智宁,谢启军,等.低温热解耦合高压等离子体技术处理农村生活垃圾工程应用[J].环境工程,2019,37(5):196-199.
    [9]
    DUAN W J,YU Q B,WANG K,et al.Aspen Plus simulation of coal integrated gasification combined blast furnace slag waste heat recovery system[J].Energy Conversion & Management,2015,100:30-36.
    [10]
    RAMZAN N,ASHRAF A,NAVEED S,et al.Simulation of hybrid biomass gasification using Aspen plus:a comparative performance analysis for food,municipal solid and poultry waste[J].Biomass Bioenergy,2011,35(9):3962-3969.
    [11]
    KECHE A J,GADDALE A P R,TATED R G.Simulation of biomass gasification in downdraft gasifier for different biomass fuels using Aspen Plus[J].Clean Technologies and Environmental Policy,2015,17(2):1-9.
    [12]
    DING K,XIONG Q G,ZHONG Z P,et al.CFD simulation of combustible solid waste pyrolysis in a fluidized bed reactor[J].Powder Technology,2020,362:177-187.
    [13]
    BEGUM S,RASUL M G,AKBAR D.A numerical investigation of municipal solid waste gasification using Aspen Plus[J].Procedia Engineering,2014,90:710-717.
    [14]
    VIBHUTI C,SANKAR B,YOGENDRA S.Pyrolysis of mixed municipal solid waste:characterisation,interaction effect and kinetic modelling using the thermogravimetric approach[J].Waste Management,2019,90:152-167.
    [15]
    SOUMAN R,YOHANNES K.Future district heating plant integrated with municipal solid waste (MSW) gasification for hydrogen production[J].Energy,2019,180:881-892.
    [16]
    付建英,余权,马瀚程,等.基于Aspen Plus的非均质垃圾与秸秆的共热解气化模拟[J].能源与环境,2020(5):2-5.
    [17]
    Tech Aspen.Aspen Plus User Guide[G].2012.
    [18]
    马大朝,高伟康,孙翔,等.稻壳与聚氯乙烯共热解的特性及动力学[J].环境工程,2020,38(1):135-140.
    [19]
    邢文龙,张蒙蒙,朱赫男,等.城市生活垃圾与园林废物的热解实验[J].环境工程,2019,37(3):152-157

    ,197.
    [20]
    胡华军,黄亚继,曹健华,等.烟气中CO2/O2气氛对稻壳流化床热解制炭的影响规律[J].环境工程,2021,39(1):117-122.
    [21]
    程伟.北京城区和农村地区生活垃圾组成特性的对比分析[J].再生资源与循环经济,2020,13(1):17-22.
    [22]
    蔡杰.基于ASPEN Plus的村镇垃圾热解气化燃烧模拟与试验[D].杭州:浙江大学,2021.
    [23]
    任露泉.回归设计及其优化[M].北京:科学出版社,2009.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (329) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return