Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027
Citation: XU Xiaomei, WANG Taishan, LIANG Ying, ZHANG Junlong, FENG Juan. UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 177-183. doi: 10.13205/j.hjgc.202202027

UNCERTAINTY ESTIMATION FOR TRADING RATE SYSTEM FOR EFFLUENT TRADING IN DAGU RIVER BASIN BASED ON SWAT MODEL

doi: 10.13205/j.hjgc.202202027
  • Received Date: 2021-04-19
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • Effluent trading is a cost-effective and efficient water quality management measure. Due to the physicochemical characteristics of water pollutants and stream self-purification, equity of the measure is facing huge challenges. These will seriously affect the efficiency of effluent trading and the realization of water quality objectives. Trading ratio is an effective way to solve this challenge. In this study, the SWAT model was used to simulate the hydrology and water quality of Dagu River basin. Then the response of NH3-N(ammonia nitrogen) loading in estuary to different pollution sources was obtained. On this basis, the spatial heterogeneity of trading ratio was analyzed, and the uncertainty estimation of the trading ratio system of discharge permits for NH3-N among different pollution sources was carried out. The results can not only lay a foundation for the establishment and improvement of the effluent trading system, but also provide support for watershed management and ecological restoration.
  • [1]
    ZHANG J L,LI Y P,HUANG G H,et al.Uncertainty analysis for effluent trading planning using a Bayesian estimation-based simulation-optimization modeling approach[J].Water Research,2017,116:159-181.
    [2]
    翁智雄,程翠云,章翼,等.瓯江流域(温州段)水污染物排污权交易比率研究[J].生态经济,2017,33(6):184-195.
    [3]
    ZHAI M Y,HUANG G H,LIU L R,et al.Transfer of virtual water embodied in food:a new perspective[J].Science of the Total Environment,2019,659:872-883.
    [4]
    ZENG X T,LI Y P,HUANG G H,et al.Inexact mathematical modeling for the identification of water trading policy under uncertainty[J].Water,2014,6(2):229-252.
    [5]
    王寿兵,陈雅敏,许博,等.废水排污权交易率问题初探[J].复旦学报(自然科学版),2010,49 (5):648-652.
    [6]
    ZHANG J L,LI Y P,ZENG X T,et al.Effluent trading planning and its application in water quality management:a factor-interaction perspective[J].Environmental Research,2019,168:286-305.
    [7]
    MALIK A S,LETSON D,CRUTCHFIELD S R.Point/nonpoint source trading of pollution abatement:choosing the right trading ratio[J].American Journal of Agricultural Economics,1993,75:959-967.
    [8]
    HUNG M F,SHAW D.A trading-ratio system for trading water pollution discharge permits[J].Journal of Environmental Economics and Management,2005,49(1):83-102.
    [9]
    ZHANG Y L,WU Y Y,YU H,et al.Trade-offs in designing water pollution trading policy with multiple objectives:a case study in the Tai Lake Basin,China[J].Environmental Science & Policy,2013,33:295-307.
    [10]
    崔素芳.变化环境下大沽河流域地表水-地下水联合模拟于预测[D].济南:山东师范大学,2015.
    [11]
    龙天渝,李继承,刘腊美.嘉陵江流域吸附态非点源污染负荷研究[J].环境科学,2008,29 (7):1812-1817.
    [12]
    DONG Y R,LI Y,KONG F L,et al.Source,structural characteristics and ecological indication of dissolved organic matter extracted from sediments in the primary tributaries of the Dagu River[J].Ecological Indicators,2020,109:105776-105787.
    [13]
    ZHANG D,YANG Y,WU J F,et al.Global sensitivity analysis on a numerical model of seawater intrusion and its implications for coastal aquifer management:a case study in Dagu River Basin,Jiaozhou Bay,China[J].Hydrogeology Journal,2020 28(7):2543-2557.
    [14]
    青岛市水利局.青岛市水资源建设及配置“十三五”规划[EB/OL].http://www.qingdao.gov.cn/n172/n24624151/n24627235/n24627249/n24627263/170103111912105276.html,2016-9-10/2021-4-14.
    [15]
    吴家林.大沽河流域氮磷关键源区识别及环境整治措施研究:基于SWAT模型氮磷排放数量核算的应用[D].青岛:中国海洋大学,2013.
    [16]
    青岛市生态环境局.省控及以上企业环境监测信息发布[DB/OL].http://117.73.254.13:8801/wryfb/MapMainT.html,2021-4-14.
    [17]
    GRUSSON Y,YOUEN G,INGRID W,et al.Influence of climate change on water partitioning in agricultural watersheds:examples from Sweden[J].Agricultural Water Management,2021,249:106766.
    [18]
    凌冰,刘晓波,黄伟,等.基于水文模型的缺资料流域缺水特征分析:以岷江茫溪河流域为例[J].环境工程技术学报,2021,11(2):241-248.
    [19]
    张俊龙.随机方法应用于水文过程分析与水质管理[D].保定:华北电力大学(保定),2017.
    [20]
    李林桓.基于SWAT模型的青衣江流域氮磷污染研究[D].成都:四川农业大学,2018.
    [21]
    NEITSCH S L,ARNOLD J G,KINIRY J R,et al.Soil and water assessment tool[M].Texas:TEXAS water Resources Institute Technical report No.406 Texas A and M University System College Station,2005:477.
    [22]
    ZOLFAGHARIPOOR M A,AHMADI A.A decision-making framework for river water quality management under uncertainty:application of social choice rules[J].Journal of Environmental Management,2016,183:152-163.
  • Relative Articles

    [1]LIU Xuhui, GAO Jingsi, YUAN Jiajia, ZHU Jia. DISTRIBUTION LAW AND INFLUENCING FACTORS OF SLUDGE YIELD OF WASTE PURIFICATION PLANTS IN L DISTRICT, SHENZHEN[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(6): 181-186. doi: 10.13205/j.hjgc.202306024
    [2]WANG Xuan, XIE Tian, ZHANG Yong, DOU Peng, CUI Baoshan, CAO Bo, LI Xinyu, DING Xinyu, YANG Zhihao. OPTIMIZATION OF ECOLOGICAL WATER SUPPLY AND LONG-TERM PROTECTION OF WETLAND BASED ON THE HYDRODYNAMIC PROCESS: A CASE STUDY OF HANSHIQIAO WETLAND IN BEIJING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(1): 61-71. doi: 10.13205/j.hjgc.202301008
    [3]PANG Min, WANG Jingxian, XU Ruichen. OPTIMIZATION OF WATER DIVERSION SCHEME OF CHAO LAKE BY IMPROVED WATER QUALITY OVER-STANDARD RATE ALGORITHM[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(3): 74-80. doi: 10.13205/j.hjgc.202203012
    [4]PAN Ying, HAN Rui, ZHANG Yin, ZHANG Jin, YI Qitao, LI Ruonan. SCENARIO STUDY OF HYDROLOGICAL PROCESS IN COAL MINING SUBSIDENCE AREA BASED ON SWAT-FLUS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 272-279. doi: 10.13205/j.hjgc.202206034
    [5]LU Yao, WANG Hongyan, LI Yanfeng, PANG Mingxin, WAN Dandan. A WATER-ENERGY-CARBON FOOTPRINT NEXUS MODEL FOR LARGE SPORTS VENUES AND ITS UNCERTAINTY ANALYSIS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 165-172. doi: 10.13205/j.hjgc.202212022
    [6]LIU Qian, WANG Wei, LUO Bin, WANG Kang. CONTRIBUTION OF POLLUTION REDUCTION MEASURES AND METEOROLOGICAL CONDITIONS TO IMPROVEMENT OF WATER ENVIRONMENT OF THE MINJIANG RIVER BASIN IN THE MIDDLE OF THE 13TH FIVE-YEAR PLAN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(5): 45-54. doi: 10.13205/j.hjgc.202105007
    [7]WANG Xue-mei, WANG Feng-wen, CHEN Tao, ZHANG Qing-guo, JIANG Yue-lin. PM2.5 CONCENTRATION PREDICTION AND UNCERTAINTY ANALYSIS BASED ON A COMPOSITE MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 229-235. doi: 10.13205/j.hjgc.202008038
    [8]GAO Shang, HU Peng, CUI Song, ZHANG Zu-lin, XING Zhen-xiang, ZHANG Fu-xiang. NUMERICA SIMULATION AND UNCERTAINTY ANALYSIS OF SURFACE RUNOFF IN NAOLI RIVER BASIN BASED ON SWAT MODEL[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 83-89. doi: 10.13205/j.hjgc.202010013
  • Cited by

    Periodical cited type(3)

    1. 梁莹,李静,李悦,王太山,尤立,张俊龙. 多目标情景下面向生态需水保障的排污权交易. 生态学杂志. 2024(12): 3828-3840 .
    2. 尹述政,许峰,王文荟,霍雯蓉,黄运新. 四湖流域径流及蓝水绿水资源时空分布模拟. 环境工程. 2022(05): 133-140 . 本站查看
    3. 饶清华,林秀珠,陈芳,陈文花,林云杉,曾雨. 基于排污量分配的流域生态补偿标准研究. 中国环境科学. 2022(06): 2828-2834 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.5
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 14.6 %FULLTEXT: 14.6 %META: 83.0 %META: 83.0 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 17.5 %其他: 17.5 %[]: 0.5 %[]: 0.5 %上海: 0.5 %上海: 0.5 %临汾: 0.5 %临汾: 0.5 %保定: 0.5 %保定: 0.5 %北京: 4.7 %北京: 4.7 %十堰: 0.9 %十堰: 0.9 %南京: 0.9 %南京: 0.9 %南充: 0.5 %南充: 0.5 %南昌: 0.5 %南昌: 0.5 %台州: 0.5 %台州: 0.5 %太原: 0.5 %太原: 0.5 %常德: 0.5 %常德: 0.5 %张家口: 2.4 %张家口: 2.4 %成都: 0.9 %成都: 0.9 %昆明: 0.9 %昆明: 0.9 %晋城: 5.2 %晋城: 5.2 %朝阳: 0.9 %朝阳: 0.9 %杭州: 0.9 %杭州: 0.9 %武汉: 2.4 %武汉: 2.4 %沈阳: 0.5 %沈阳: 0.5 %济源: 0.5 %济源: 0.5 %渭南: 2.8 %渭南: 2.8 %漯河: 2.8 %漯河: 2.8 %石家庄: 0.9 %石家庄: 0.9 %福州: 0.9 %福州: 0.9 %芒廷维尤: 31.1 %芒廷维尤: 31.1 %芝加哥: 1.9 %芝加哥: 1.9 %苏州: 0.5 %苏州: 0.5 %西宁: 4.7 %西宁: 4.7 %西安: 2.8 %西安: 2.8 %贵阳: 0.5 %贵阳: 0.5 %运城: 4.7 %运城: 4.7 %遵义: 0.5 %遵义: 0.5 %邯郸: 0.5 %邯郸: 0.5 %郑州: 0.5 %郑州: 0.5 %长沙: 1.4 %长沙: 1.4 %青岛: 0.5 %青岛: 0.5 %其他[]上海临汾保定北京十堰南京南充南昌台州太原常德张家口成都昆明晋城朝阳杭州武汉沈阳济源渭南漯河石家庄福州芒廷维尤芝加哥苏州西宁西安贵阳运城遵义邯郸郑州长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (175) PDF downloads(5) Cited by(6)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return