Citation: | CHENG Zi, SHEN Boxiong, LU: Honghong, WANG Xudong, YANG Wei. APPLICATION OF STABILIZERS IN IMPROVING ENVIRONMENTAL REMEDIATION PERFORMANCE OF NANOMATERIALS AND THEIR COMPOSITES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 225-234. doi: 10.13205/j.hjgc.202202033 |
[1] |
陶鑫.纳米材料在污染水体和土壤修复中的运用[J].中国标准化,2018(22):238-239.
|
[2] |
吕宏虹,宫艳艳,唐景春,等.生物炭及其复合材料的制备与应用研究进展[J].农业环境科学学报,2015,34(8):1429-1440.
|
[3] |
任黎明.黄原胶稳定氧化石墨烯负载纳米铁去除地下水中六价铬污染的研究[D].长春:吉林大学,2019.
|
[4] |
KARTHICK A,ROY B,CHATTOPADHYAY P.Comparison of zero-valent iron and iron oxide nanoparticle stabilized alkyl polyglucoside phosphate foams for remediation of diesel-contaminated soils[J].Journal of Environmental Management,2019,240:93-107.
|
[5] |
LEI T,LI S J,JIANG F,et al.Adsorption of cadmium ions from an aqueous solution on a highly stable dopamine-modified magnetic nano-adsorbent[J].Nanoscale Research Letters,2019,14:352.
|
[6] |
ZHAO X,LIU W,CAI Z Q,et al.An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation[J].Water Research,2016,100:245-266.
|
[7] |
余洲.惰性气体冷凝法制备Fe90Sc10纳米非晶材料研究及其系统优化[D].南京:南京理工大学,2018.
|
[8] |
XUE W J,HUANG D L,ZENG G M,et al.Nanoscale zero-valent iron coated with rhamnolipid as an effective stabilizer for immobilization of Cd and Pb in river sediments[J].Journal of Hazardous Materials,2018,341:381-389.
|
[9] |
RAY S S,YAMADA K,KAZUNOBU O,et al.Biodegradable polylactide/montmorillonite nanocomposites[J].Journal of Nanoscience and Nanotechnology,2003,3:503-510.
|
[10] |
LIPATOVA I M,MAKAROVA L I,YUSOVA A A.Adsorption removal of anionic dyes from aqueous solutions by chitosan nanoparticles deposited on the fibrous carrier[J].Chemosphere,2018,212:1155-1162.
|
[11] |
MAHNOUD M E,NABIL G M,ZAKI M M,et al.Starch functionalization of iron oxide by-product from steel industry as a sustainable low cost nanocomposite for removal of divalent toxic metal ions from water[J].International Journal of Biological Macromolecules,2019,137:455-468.
|
[12] |
闫奇,郑乾送,周江敏,等.生物炭负载羧甲基纤维素钠稳定化纳米铁对水中六价铬的去除[J].环境工程学报,2020,14:579-587.
|
[13] |
DINARI M,NEAMATI S.Surface modified layered double hydroxide/polyaniline nanocomposites:synthesis,characterization and Pb2+ removal[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,589:124438.
|
[14] |
SAKULCHAICHAROEN N,O’CARROLL D M,HERRERA J E.Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale FePd particles[J].Journal of Contaminant Hydrology,2010,118:117-127.
|
[15] |
LI F,VIPULANANDAN C,MOHANTY K K.Microemulsion and solution approaches to nanoparticle iron production for degradation of trichloroethylene[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2003,223(1/2/3):103-112.
|
[16] |
CONNOLLY M,ZHANG Y,BROWN D M,et al.Novel polylactic acid (PLA)-organoclay nanocomposite bio-packaging for the cosmetic industry;migration studies and in vitro assessment of the dermal toxicity of migration extracts[J].Polymer Degradation and Stability,2019,168:108938.
|
[17] |
VANDENABEELE C R,LUCAS S.Technological challenges and progress in nanomaterials plasma surface modification:a review[J].Materials Science and Engineering:R:Reports,2020,139:100521.
|
[18] |
PENG Z L,XIONG C M,WANG W,et al.Facile modification of nanoscale zero-valent iron with high stability for Cr(Ⅵ) remediation[J].Science of The Total Environment,2017,596:266-273.
|
[19] |
LI Y C,JIN Z H,LI T L,et al.One-step synthesis and characterization of core-shell Fe@SiO2 nanocomposite for Cr (Ⅵ) reduction[J].Science of The Total Environment,2012,421:260-266.
|
[20] |
KUMARI S,KHAN A A,CHOWDHURY A,et al.Efficient and highly selective adsorption of cationic dyes and removal of ciprofloxacin antibiotic by surface modified nickel sulfide nanomaterials:kinetics,isotherm and adsorption mechanism[J].Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,586:124264.
|
[21] |
黄冰,李故功,冯晓静,等.壳聚糖稳定纳米铁材料在水环境修复中的应用[J].广东化工,2018,45(22):69-70
,78.
|
[22] |
WANG J L,JI B,SHU Y R,et al.Cr (Ⅵ) Removal from aqueous solution using starch and sodium carboxymethyl cellulose-coated Fe and Fe/Ni nanoparticles[J].Polish Journal of Environmental Studies,2018,27:2785-2792.
|
[23] |
ZHANG W Y,QIAN L B,OUYANG D,et al.Effective removal of Cr (Ⅵ) by attapulgite-supported nanoscale zero-valent iron from aqueous solution:enhanced adsorption and crystallization[J].Chemosphere,2019,221:683-692.
|
[24] |
CHI Z X,WANG Z,LIU Y,et al.Preparation of organosolv lignin-stabilized nano zero-valent iron and its application as granular electrode in the tertiary treatment of pulp and paper wastewater[J].Chemical Engineering Journal,2018,331:317-325.
|
[25] |
GUO L R,LIU Y Z,DOU J B,et al.Surface modification of carbon nanotubes with polyethyleneimine through “mussel inspired chemistry” and “Mannich reaction” for adsorptive removal of copper ions from aqueous solution[J].Journal of Environmental Chemical Engineering,2020,8:103721.
|
[26] |
ZHANG S,LYU H H,TANG J C,et al.A novel biochar supported CMC stabilized nano zero-valent iron composite for hexavalent chromium removal from water[J].Chemosphere,2019,217:686-694.
|
[27] |
ANJUM F,GUL S,KHAN M I,et al.Efficient synthesis of palladium nanoparticles using guar gum as stabilizer and their applications as catalyst in reduction reactions and degradation of azo dyes[J].Green Process Synth,2020,9:63-76.
|
[28] |
夏涛,汪壮,黄莺,等.环氧改性酚醛树脂纳米复合材料的制备及性能研究[J].化工新型材料,2019,47(12):66-70.
|
[29] |
BERGE N D,RAMSBURG C A.Oil-in-water emulsions for encapsulated delivery of reactive iron particles[J].Environmental Science & Technology,2009,43:5060-5066.
|
[30] |
ZENG Q,HUANG Y J,HUANG L M,et al.Efficient removal of hexavalent chromium in a wide pH range by composite of SiO2 supported nano ferrous oxalate[J].Chemical Engineering Journal,2020,383:123209.
|
[31] |
LYU H H,ZHAO H,TANG J C,et al.Immobilization of hexavalent chromium in contaminated soils using biochar supported nanoscale iron sulfide composite[J].Chemosphere,2018,194:360-369.
|
[32] |
XIN X D,SUN S H,WANG M Q,et al.Adsorption/reduction of N-dimethylnitrosamine from aqueous solution using nano zero-valent iron nanoparticles supported on ordered mesoporous silica[J].Water Science and Technology-Water Supply,2017,17:1097-1105.
|
[33] |
CHEMINSKI T,NEVES T D,SILVA P M,et al.Insertion of phenyl ethyleneglycol units on graphene oxide as stabilizers and its application for surfactant removal[J].Journal of Environmental Chemical Engineering,2019,7:102976.
|
[34] |
HOU S Y,WU B,PENG D H,et al.Remediation performance and mechanism of hexavalent chromium in alkaline soil using multi-layer loaded nano-zero-valent iron[J].Environmental Pollution,2019,252:553-561.
|
[35] |
SU H J,FANG Z Q,TSANG P E,et al.Stabilisation of nanoscale zero-valent iron with biochar for enhanced transport and in-situ remediation of hexavalent chromium in soil[J].Environmental Pollution,2016,214:94-100.
|
[36] |
SEPEHRI S,NAKHJAVANIMOGHADDAM M M.Batch removal of aqueous nitrate ions using an effective nano-biocomposite[J].Global Nest Journal,2019,21:265-275.
|
[37] |
XING R,HE J J,HAO P L,et al.Graphene oxide-supported nanoscale zero-valent iron composites for the removal of atrazine from aqueous solution[J].Colloids and Surfaces A-Physicochemical and Engineering Aspects,2020,589:124466.
|
[38] |
CHI Z X,HAO L,DONG H,et al.The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment[J].Chemical Engineering Journal,2020,382:122789.
|
[39] |
ZHANG D J,SHEN J Y,SHI H F,et al.Substantially enhanced anaerobic reduction of nitrobenzene by biochar stabilized sulfide-modified nanoscale zero-valent iron:process and mechanisms[J].Environment International,2019,131:105020.
|
[40] |
蒲生彦,上官李想,刘世宾,等.生物炭及其复合材料在土壤污染修复中的应用研究进展[J].生态环境学报,2019,28(3):629-635.
|
[41] |
WANG L,WANG J Y,WANG Z X,et al.Enhanced antimonate [Sb(Ⅴ)] removal from aqueous solution by La-doped magnetic biochars[J].Chemical Engineering Journal,2018,354:623-632.
|
[42] |
HUGHES M F.Arsenic toxicity and potential mecha3737nisms of action[J].Toxicology Letters,2002,133:1-16.
|
[43] |
LEI C,WANG C W,CHEN W Q,et al.Polyaniline@magnetic chitosan nanomaterials for highly efficient simultaneous adsorption and in-situ chemical reduction of hexavalent chromium:removal efficacy and mechanisms[J].Science of the Total Environment,2020,733:139316.
|
[44] |
MA C B,DU Y,DU B J,et al.Investigation of an eco-friendly aerogel as a substrate for the immobilization of MoS2 nanoflowers for removal of mercury species from aqueous solutions[J].Journal of Colloid and Interface Science,2018,525:251-259.
|
[45] |
BHOWMICK S,CHAKRABORTY S,MONDAL P,et al.Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution:kinetics and mechanism[J].Chemical Engineering Journal,2014,243:14-23.
|
[46] |
杨奇亮,吴平霄.改性多孔生物炭的制备及其对水中四环素的吸附性能研究[J].环境科学学报,2019,39(12):3973-3984.
|
[47] |
龚璇.纳米Fe/Ni的负载和改性及其去除重金属和氯代有机物性能与机理研究[D].武汉:武汉科技大学,2018.
|
[48] |
LYU H H,TANG J C,CUI M K,et al.Biochar/iron (BC/Fe) composites for soil and groundwater remediation:synthesis,applications,and mechanisms[J].Chemosphere,2020,246:125609.
|
[49] |
LYU H H,XIA S Y,TANG J C,et al.Thiol-modified biochar synthesized by a facile ball-milling method for enhanced sorption of inorganic Hg2+ and organic CH3Hg+[J].Journal of Hazardous Materials,2020,384:121357.
|
[50] |
WANG S S,ZHOU Y X,HAN S W,et al.Carboxymethyl cellulose stabilized ZnO/biochar nanocomposites:enhanced adsorption and inhibited photocatalytic degradation of methylene blue[J].Chemosphere,2018,197:20-25.
|
[1] | LI Qingpo, PENG Jianping, LIU Xingjian, WANG Yaowu, DI Yuezhong. Carbon emission analysis of primary aluminum production in China based on energy consumption[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 21-30. doi: 10.13205/j.hjgc.202501003 |
[2] | DU Jiamin, WEI Yuanyuan, DING Chao, ZHU Haochuan, LIU Weijing, TANG Baiyang, YANG Shiyao, FENG Qian. RESEARCH ON LAYOUT OF INTERCEPTION COMBINED SEWER OVERFLOW DETENTION TANKS BASED ON THEIR LIFE CYCLE CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 50-60. doi: 10.13205/j.hjgc.202411006 |
[3] | GANG Qinyan, MA Xiaoqian, LIU Chao, WANG Han, WANG Yayi. RESEARCH ON CARBON EMISSION CHARACTERISTICS OF MUNICIPAL SOLID WASTE INCINERATION LEACHATE TREATMENT SYSTEM[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(4): 31-39. doi: 10.13205/j.hjgc.202404004 |
[4] | WANG Hang, WANG Xiankai, CHEN Xiang, LI Kun, QIAO Xueyuan, LIU Feng, DONG Bin. CARBON EMISSION ANALYSIS OF COLLABORATIVE TREATMENT OF MUNICIPAL ORGANIC SOLID WASTE[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(2): 66-72. doi: 10.13205/j.hjgc.202402008 |
[5] | WU Yiqi, YIN Xiaoqing. STUDY ON STANDARDS ON CARBON EMISSION IN MUNICIPAL WATER SUPPLY AND DRAINAGE SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(11): 146-152. doi: 10.13205/j.hjgc.202411016 |
[6] | WANG Ning, HAN Chengyu, ZHANG Yang, GU Zhaolin. REGIONAL CARBON EMISSION PEAKING BASED ON THRESHOLD-STIRPAT EXTENSION MODEL: A CASE STUDY ON EAST CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 154-162. doi: 10.13205/j.hjgc.202405020 |
[7] | CHEN Chen, LI Wei, ZHAI Mengyu, BAO Zhe, WANG Zhenyu, ZHU Liangliang. IMPACT OF INTER-REGIONAL TRADE ON SHANGHAI’S ENERGY-RELATED CARBON EMISSIONS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 245-252,259. doi: 10.13205/j.hjgc.202310028 |
[8] | MA Tao, GUO Yuehua, WANG Weiwei, CAO Jingguo. CARBON EMISSION CALCULATION AND ANALYSIS FOR CURED-IN-PLACE REHABILITATION OF URBAN DRAINAGE PIPELINE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(11): 54-58,63. doi: 10.13205/j.hjgc.202311011 |
[9] | LI Jianyuan, SUN Yunan, HUANG Jiale, CHEN Qijing, JIA Yue, GAO Yule, CHENG Zhanjun, YAN Beibei, CHEN Guanyi. CARBON EMISSION ANALYSIS OF WASTE BIODEGRADABLE PLASTICS BY DIFFERENT DISPOSAL TECHNOLOGIES[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(9): 124-132. doi: 10.13205/j.hjgc.202309015 |
[10] | REN Hongyang, DU Ruolan, XIE Guilin, JIN Wenhui, LI Xi, DENG Yuanpeng, MA Wei, WANG Bing. RESEARCH STATUS OF INFLUENCING FACTORS AND IDENTIFICATION METHODS OF CARBON EMISSIONS IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 195-203,244. doi: 10.13205/j.hjgc.202310023 |
[11] | WANG Shuo, LU Yunping, LIU Shuyang, CHEN Kangli. CARBON EMISSIONS OF URBAN AND INDUSTRIAL SEWAGE TREATMENT PLANTS OF SUZHOU[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 173-184. doi: 10.13205/j.hjgc.202310021 |
[12] | YU Jie, ZHANG Yong, LI Qingyao. DECOUPLING EFFECT AND DRIVING MECHANISM OF CARBON EMISSION REDUCTION IN MANUFACTURING INDUSTRY: A TWO-DIMENSIONAL ANALYSIS FRAMEWORK[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 150-162. doi: 10.13205/j.hjgc.202310019 |
[13] | WU Qixian, XIE Xinyan, CHEN Yun, JIN Ziyi. ANALYSIS OF FACTORS INFLUENCING CARBON EMISSIONS OF URBAN RAIL TRANSIT PROJECTS BASED ON PARTIAL LEAST SQUARES STRUCTURAL EQUATION MODELING[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 133-140. doi: 10.13205/j.hjgc.202310017 |
[14] | WANG Zhiqiang, LI Kehui, REN Jin'ge, ZHANG Qi. INFLUENTIAL FACTORS AND SCENARIO FORECAST OF CARBON EMISSIONS OF CONSTRUCTION INDUSTRY IN SHANDONG PROVINCE BASED ON LMDI-SD MODEL[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(10): 108-116. doi: 10.13205/j.hjgc.202310014 |
[15] | WANG Zhaoyue, ZHAO Xiaying, TANG Linhui, LIU Yu, CHENG Huiyu, PAN Yirong, YAN Xu, WANG Xu. RESEARCH ADVANCES IN CARBON EMISSION MONITORING AND ASSESSMENT OF URBAN DRAINAGE AND WASTEWATER TREATMENT SYSTEMS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 77-82,161. doi: 10.13205/j.hjgc.202206010 |
[16] | ZHAO Gang, TANG Jianguo, XU Jingcheng, LUO Jingyang, JIANG Ming, YUAN Xianchen, ZHOU Chuanting. COMPARATIVE ANALYSIS ON ENERGY AND CARBON EMISSION OF TYPICAL SLUDGE TREATMENT PROJECTS IN CHINA AND THE UNITED STATES[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 9-16. doi: 10.13205/j.hjgc.202212002 |
[17] | LUO Yuli, PAN Yirong, MA Jiaxin, WANG Jiayuan, LI Chunyao, CHEN Zhenpeng, WANG Xu. RESEARCH ADVANCES ON CARBON EMISSION OF WASTEWATER RESOURCE RECOVERY AND VALORIZATION[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(6): 83-91,187. doi: 10.13205/j.hjgc.202206011 |
[18] | YANG Nan, LI Yan-xia, LV Chen, ZHAO Meng, LIU Zhong-liang, LIU Hao. CARBON EMISSION ACCOUNTING AND PEAK FORECASTING OF IRON & STEEL INDUSTRY IN TANGSHAN[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(11): 44-52. doi: 10.13205/j.hjgc.202011008 |
[19] | Zhang Feng Yin Xiuqing Dong Huizhong, . APPLICATION OF COMBINATION GREY MODEL IN CARBON EMISSIONS PREDICTION IN SHANDONG PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2015, 33(2): 147-152. doi: 10.13205/j.hjgc.201502033 |
[20] | STUDY OF CARBON EMISSION UNDER CHANGE IN LAND USE PATTERNS IN TAIHANG MOUNTAIN AREA OF HEBEI PROVINCE[J]. ENVIRONMENTAL ENGINEERING , 2014, 32(12): 133-135. doi: 10.13205/j.hjgc.201412024 |