Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
YAO Hai-bo, WU Shi-hong, YIN Yan-mei, GE Li-yan, WANG Jie, CHENG Zhi-yang. CHARACTERISTICS OF MEMBRANE FOULING IN TREATMENT OF POLYMER FLOODING WASTEWATER WITH HOLLOW FIBER ULTRAFILTRATION MEMBRANE[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(7): 145-150. doi: 10.13205/j.hjgc.202107019
Citation: HAN Meng, ZHANG Liangliang, LU Zhongfei, SUN Jian. COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 235-239. doi: 10.13205/j.hjgc.202202034

COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS

doi: 10.13205/j.hjgc.202202034
  • Received Date: 2020-12-07
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • The soundness problem caused by the expansion of converter slag is the main reason restricting the large-scale application of converter slag in road construction and building materials. This paper analyzed main reasons of the poor soundness of converter slag in China, and compared the advantages and disadvantages of each evaluation method from five aspects: f-CaO content determination could be used as an auxiliary mean to evaluate the content of main expansive minerals in steel slag quickly; the autoclaved pulverization rate was suitable to evaluate the expansion caused by f-CaO and periclase; the linear expansion rate method of mortar bar needed to be further improved; the soundness of steel slag used in road construction could be effectively tested by 10 days dimmersion expansion rate in of compacted specimens; autoclave method is too severe to test the soundness of the concrete with steel slag aggregate. Combing these five evaluation methods can provide reference for the soundness quality control and research of steel slag as aggregate.
  • [1]
    黄圣妩.某公司水泥熟料库中心筒耐热混凝土质量事故分析[D].广州:华南理工大学,2014:40-43.
    [2]
    赵爽,陆加越,沙建芳,等.某楼盘混凝土爆裂原因分析[J].工业建筑,2016(增刊1):655-657.
    [3]
    张亚梅,李保亮.用钢渣作骨料引起的混凝土工程开裂问题案例分析[J].混凝土世界,2016(6):22-25.
    [4]
    王枫,高波.某学校混凝土爆裂事故原因分析[J].混凝土与水泥制品,2011(12):53-55.
    [5]
    冯涛,施惠生,俞海勇,等.不同废渣中游离氧化钙水化活性的实验研究[J].粉煤灰,1998(6):18-20.
    [6]
    张亮亮,蒲克元,吴智,等.转炉钢渣中MgO的来源、存在形态和方镁石定量分析方法[J].工业建筑,2015(增刊):62-67.
    [7]
    MPTA H,GEISELER J.Products of steel slag an opportunity to save natural resources[J].Waste Management,2001,2:2-8.
    [8]
    孟华栋,刘浏.转炉钢渣成渣过程的岩相研究[J].钢铁,2010(6):26-30.
    [9]
    伦云霞.钢渣砂砂浆膨胀破坏行为及作用机理研究[D].武汉:武汉理工大学,2009,12.
    [10]
    ARJUNAN P,KUMAR A.Rapid techniques for determination of free lime and free magnesia in cement clinker and portlandite in hydrates[J].Cement and Concrete Research,1994,24(2):343-352.
    [11]
    闾文,卢忠飞,夏春.钢渣中游离氧化镁消解速度及对混凝土安定性影响的研究[J].工业建筑,2015(增刊):68-71.
    [12]
    刘珩,卢都友,许仲梓.集料碱活性检测方法评述[J].混凝土与水泥制品,2003(4):1-6.
    [13]
    Japanese Standards Association.Iron and steel slag for road construction:JIS A5015-2013[S].2013:6.
    [14]
    American Society for Testing and Materials:Standard Specification for Steel Slag Aggregates for Bituminous Paving Mixtures:ASTM D5106-2013,2013:1-3.
    [15]
    American Society for Testing and Materials:Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions:ASTM D4792-2013,2013:1-3.
    [16]
    台湾地方标准.Method of Test for Potential Expansion of Aggregates from Hydration Reactions CNS15311-2010[S].2010.
    [17]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.道路用钢渣:GB/T 25824—2010[S].北京:中国标准出版社,2011:3.
    [18]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.钢渣稳定性试验方法:GB/T 24175—2009[S].北京:中国标准出版社,2010:3-4.
    [19]
    米贵东,王强,王卫仑.蒸养条件下钢渣粗骨料对混凝土的破坏作用[J].清华大学学报(自然科学版),2015,55(9):940-944.
  • Relative Articles

    [1]WU Yuedong, LÜ Wen, YUE Changsheng, WU Long, PENG Ben. THEORETICAL RESEARCH AND APPLICATION OF CARBONATION AND MICROBIAL MINERALIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(3): 171-175. doi: 10.13205/j.hjgc.202403021
    [2]LIU Wenhao, CHEN Qingcai, XU Tengfei. RESEARCH PROGRESS OF CARBON SEQUESTRATION TECHNOLOGY OF STEEL SLAG UNDER THE BACKGROUND OF DUAL CARBON STRATEGY[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 172-182. doi: 10.13205/j.hjgc.202405022
    [3]LIU Zhihua, NING Beiyao, RONG Hui, WANG Anhui, ZHANG Yanfang, FENG Yang, LIU De'e, HAN Zhaopan, YUE Changsheng, DAI Xiaomeng. EFFECT OF MICROBIAL MODIFICATION ON STEEL SLAG ON ITS STABILITY AND ITS APPLICATION IN ROAD ENGINEERING[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(7): 208-216. doi: 10.13205/j.hjgc.202407023
    [4]LI Sha, WANG Zhaojia, WANG Mingwei, ZHENG Yongchao, ZHAN Jiayu. LONG-TERM LEACHING BEHAVIORS OF HEAVY METALS FROM STEEL SLAG IN CEMENT-BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(3): 136-142. doi: 10.13205/j.hjgc.202303018
    [5]SHAO Yan, JIANG Mingming, XIONG Jingchao, GUO Huajun, CHEN Kun, LIU Zihao, XU Xiaoming, HU Guofeng. INFLUENCE OF ADMIXTURES ON STRENGTH AND HYDRATION PERFORMANCE OF STEEL SLAG & DESULFURIZATION ASH BASED CEMENTITIOUS MATERIALS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(12): 134-141. doi: 10.13205/j.hjgc.202212018
    [6]WU Yue-dong, PENG Ben, WU Long, LV Wen, ZHANG Guo-hua. REVIEW ON GLOBAL DEVELOPMENT OF TREATMENT AND UTILIZATION OF STEEL SLAG[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(1): 161-165. doi: 10.13205/j.hjgc.202101025
    [7]TIAN Jian, LU Feng, CHEN Kun, YUAN Yue-hui. PREPARATION AND PROPERTIES OF COPPER TAILINGS AND CERAMIC POLISHING MUD BY AUTOCLAVED AERATED CONCRETE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(1): 157-161. doi: 10.13205/j.hjgc.202001025
    [8]LV Wen, JIA Jin-wei, ZHANG Shao-fei, ZHANG Fan, SONG Qiang, GU Qiu-xiang, SHU Xin-qian. INFLUENCE OF STEEL SLAG ON PYROLYSIS OF OIL TANK BOTTOM SLUDGE IN BEIJING-TIANJIN-HEBEI REGION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(10): 169-176. doi: 10.13205/j.hjgc.202010027
    [9]WANG Hui-gang, PENG Ben, YUE Chang-sheng, WU Long, QIU Gui-bo, BAI Zhi-tao, ZHANG Mei, GUO Min. RESEARCH PROGRESS AND PROSPECT OF STEEL SLAG MODIFICATION[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(5): 133-137,106. doi: 10.13205/j.hjgc.202005023
    [10]LIU Tong-li, ZHAO Li-xin, MENG Hai-bo, YAO Zong-lu, ZHANG Xi-rui, HUO Li-li. RESEARCH AND OPTIMIZATION OF EVALUATION METHODS FOR STRAW ENERGY UTILIZATION TECHNOLOGY[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(8): 195-200. doi: 10.13205/j.hjgc.202008032
  • Cited by

    Periodical cited type(10)

    1. 张刘阳,陈潇,吕国明,王本仁,周明凯. 钢渣特性随粒级分布的规律研究. 材料导报. 2025(03): 133-140 .
    2. 袁正国,陶智忠. 基于水化特性的钢渣膨胀抑制机理研究. 金属矿山. 2025(02): 263-269 .
    3. 滕胜杰,朱琳,李运泽,王新年,晋强. 基于卷积神经网络的钢渣砂图像识别及图像变化规律. 科学技术与工程. 2024(01): 300-307 .
    4. 叶雁飞,马伟克,申振伟,张浩. 钢渣对混凝土安定性的影响及评价. 化工矿物与加工. 2024(02): 40-46 .
    5. 陈春,李之涵,潘伟行,傅琦,张亚梅. 工业CT对混凝土中混杂钢渣颗粒的鉴别应用. 建筑材料学报. 2024(04): 343-349 .
    6. 唐坤,胡杰,唐钷,纪鹏远. 含有安定性不良钢渣骨料的混凝土病害诊治研究. 建筑结构. 2024(10): 94-99+72 .
    7. 黄玉鸿,朴星君,韩檬,张亮亮,孙健. 电弧炉钢渣作混凝土骨料的分析探讨. 环境工程. 2023(S1): 592-595 . 本站查看
    8. 李黎阳,陈国新,田亚超. 矿粉稳定钢渣混合料的强度及微观机理研究. 森林工程. 2023(05): 183-189 .
    9. 杨杰,李勃. 改良钢渣路基填料膨胀性试验研究. 路基工程. 2022(05): 107-111 .
    10. 毛志毅,刘彤,张鹏宇,王冬梅,王森,王婉申,孙倩,李雪艳. 钢渣骨料体积安定性检测研究. 混凝土世界. 2022(11): 18-23 .

    Other cited types(7)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-04010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 8.4 %FULLTEXT: 8.4 %META: 89.1 %META: 89.1 %PDF: 2.4 %PDF: 2.4 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 12.2 %其他: 12.2 %China: 3.0 %China: 3.0 %[]: 0.3 %[]: 0.3 %上海: 1.9 %上海: 1.9 %东莞: 1.4 %东莞: 1.4 %临汾: 0.3 %临汾: 0.3 %乌鲁木齐: 0.3 %乌鲁木齐: 0.3 %保定: 0.3 %保定: 0.3 %北京: 8.2 %北京: 8.2 %十堰: 1.1 %十堰: 1.1 %南京: 1.9 %南京: 1.9 %南通: 0.5 %南通: 0.5 %台州: 1.1 %台州: 1.1 %合肥: 0.3 %合肥: 0.3 %吉达: 0.3 %吉达: 0.3 %吕梁: 0.5 %吕梁: 0.5 %呼和浩特: 0.5 %呼和浩特: 0.5 %咸宁: 0.3 %咸宁: 0.3 %哈尔滨: 0.5 %哈尔滨: 0.5 %嘉兴: 0.3 %嘉兴: 0.3 %大连: 0.5 %大连: 0.5 %天津: 1.6 %天津: 1.6 %太原: 0.3 %太原: 0.3 %宁波: 0.3 %宁波: 0.3 %宿州: 0.3 %宿州: 0.3 %常州: 0.5 %常州: 0.5 %常德: 0.3 %常德: 0.3 %广州: 2.7 %广州: 2.7 %张家口: 0.8 %张家口: 0.8 %成都: 0.3 %成都: 0.3 %扬州: 2.2 %扬州: 2.2 %昆明: 1.6 %昆明: 1.6 %晋中: 1.4 %晋中: 1.4 %晋城: 0.5 %晋城: 0.5 %朝阳: 0.8 %朝阳: 0.8 %杭州: 2.7 %杭州: 2.7 %武汉: 2.2 %武汉: 2.2 %沈阳: 0.3 %沈阳: 0.3 %泰安: 0.3 %泰安: 0.3 %济南: 0.5 %济南: 0.5 %济宁: 0.3 %济宁: 0.3 %济源: 0.5 %济源: 0.5 %淄博: 0.3 %淄博: 0.3 %淮安: 0.3 %淮安: 0.3 %深圳: 0.3 %深圳: 0.3 %温州: 0.8 %温州: 0.8 %湖州: 1.4 %湖州: 1.4 %漯河: 7.6 %漯河: 7.6 %烟台: 0.3 %烟台: 0.3 %石家庄: 0.8 %石家庄: 0.8 %福州: 2.4 %福州: 2.4 %聊城: 0.3 %聊城: 0.3 %芒廷维尤: 10.6 %芒廷维尤: 10.6 %芝加哥: 0.5 %芝加哥: 0.5 %苏州: 0.3 %苏州: 0.3 %莆田: 0.3 %莆田: 0.3 %衡水: 0.5 %衡水: 0.5 %衢州: 0.8 %衢州: 0.8 %西宁: 6.3 %西宁: 6.3 %西安: 1.1 %西安: 1.1 %运城: 2.4 %运城: 2.4 %遵义: 0.3 %遵义: 0.3 %邯郸: 0.8 %邯郸: 0.8 %郑州: 1.1 %郑州: 1.1 %重庆: 1.4 %重庆: 1.4 %银川: 0.8 %银川: 0.8 %长沙: 1.4 %长沙: 1.4 %青岛: 0.3 %青岛: 0.3 %马鞍山: 0.3 %马鞍山: 0.3 %黄石: 0.3 %黄石: 0.3 %黔南: 0.3 %黔南: 0.3 %其他China[]上海东莞临汾乌鲁木齐保定北京十堰南京南通台州合肥吉达吕梁呼和浩特咸宁哈尔滨嘉兴大连天津太原宁波宿州常州常德广州张家口成都扬州昆明晋中晋城朝阳杭州武汉沈阳泰安济南济宁济源淄博淮安深圳温州湖州漯河烟台石家庄福州聊城芒廷维尤芝加哥苏州莆田衡水衢州西宁西安运城遵义邯郸郑州重庆银川长沙青岛马鞍山黄石黔南

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (327) PDF downloads(9) Cited by(17)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return