Source Jouranl of CSCD
Source Journal of Chinese Scientific and Technical Papers
Included as T2 Level in the High-Quality Science and Technology Journals in the Field of Environmental Science
Core Journal of RCCSE
Included in the CAS Content Collection
Included in the JST China
Indexed in World Journal Clout Index (WJCI) Report
HAN Meng, ZHANG Liangliang, LU Zhongfei, SUN Jian. COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 235-239. doi: 10.13205/j.hjgc.202202034
Citation: HAN Meng, ZHANG Liangliang, LU Zhongfei, SUN Jian. COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(2): 235-239. doi: 10.13205/j.hjgc.202202034

COMPARATIVE ANALYSIS OF EVALUATION METHODS FOR STEEL SLAG SOUNDNESS

doi: 10.13205/j.hjgc.202202034
  • Received Date: 2020-12-07
    Available Online: 2022-04-02
  • Publish Date: 2022-04-02
  • The soundness problem caused by the expansion of converter slag is the main reason restricting the large-scale application of converter slag in road construction and building materials. This paper analyzed main reasons of the poor soundness of converter slag in China, and compared the advantages and disadvantages of each evaluation method from five aspects: f-CaO content determination could be used as an auxiliary mean to evaluate the content of main expansive minerals in steel slag quickly; the autoclaved pulverization rate was suitable to evaluate the expansion caused by f-CaO and periclase; the linear expansion rate method of mortar bar needed to be further improved; the soundness of steel slag used in road construction could be effectively tested by 10 days dimmersion expansion rate in of compacted specimens; autoclave method is too severe to test the soundness of the concrete with steel slag aggregate. Combing these five evaluation methods can provide reference for the soundness quality control and research of steel slag as aggregate.
  • [1]
    黄圣妩.某公司水泥熟料库中心筒耐热混凝土质量事故分析[D].广州:华南理工大学,2014:40-43.
    [2]
    赵爽,陆加越,沙建芳,等.某楼盘混凝土爆裂原因分析[J].工业建筑,2016(增刊1):655-657.
    [3]
    张亚梅,李保亮.用钢渣作骨料引起的混凝土工程开裂问题案例分析[J].混凝土世界,2016(6):22-25.
    [4]
    王枫,高波.某学校混凝土爆裂事故原因分析[J].混凝土与水泥制品,2011(12):53-55.
    [5]
    冯涛,施惠生,俞海勇,等.不同废渣中游离氧化钙水化活性的实验研究[J].粉煤灰,1998(6):18-20.
    [6]
    张亮亮,蒲克元,吴智,等.转炉钢渣中MgO的来源、存在形态和方镁石定量分析方法[J].工业建筑,2015(增刊):62-67.
    [7]
    MPTA H,GEISELER J.Products of steel slag an opportunity to save natural resources[J].Waste Management,2001,2:2-8.
    [8]
    孟华栋,刘浏.转炉钢渣成渣过程的岩相研究[J].钢铁,2010(6):26-30.
    [9]
    伦云霞.钢渣砂砂浆膨胀破坏行为及作用机理研究[D].武汉:武汉理工大学,2009,12.
    [10]
    ARJUNAN P,KUMAR A.Rapid techniques for determination of free lime and free magnesia in cement clinker and portlandite in hydrates[J].Cement and Concrete Research,1994,24(2):343-352.
    [11]
    闾文,卢忠飞,夏春.钢渣中游离氧化镁消解速度及对混凝土安定性影响的研究[J].工业建筑,2015(增刊):68-71.
    [12]
    刘珩,卢都友,许仲梓.集料碱活性检测方法评述[J].混凝土与水泥制品,2003(4):1-6.
    [13]
    Japanese Standards Association.Iron and steel slag for road construction:JIS A5015-2013[S].2013:6.
    [14]
    American Society for Testing and Materials:Standard Specification for Steel Slag Aggregates for Bituminous Paving Mixtures:ASTM D5106-2013,2013:1-3.
    [15]
    American Society for Testing and Materials:Standard Test Method for Potential Expansion of Aggregates from Hydration Reactions:ASTM D4792-2013,2013:1-3.
    [16]
    台湾地方标准.Method of Test for Potential Expansion of Aggregates from Hydration Reactions CNS15311-2010[S].2010.
    [17]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.道路用钢渣:GB/T 25824—2010[S].北京:中国标准出版社,2011:3.
    [18]
    中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会.钢渣稳定性试验方法:GB/T 24175—2009[S].北京:中国标准出版社,2010:3-4.
    [19]
    米贵东,王强,王卫仑.蒸养条件下钢渣粗骨料对混凝土的破坏作用[J].清华大学学报(自然科学版),2015,55(9):940-944.
  • Relative Articles

    [1]LE Jihang, WANG Wenlong, WU Qianyuan, CHEN Zhuo, WU Yinhu, JIA Haifeng, LIU Fanghua, WANG Fang, HU Hongying. Quality and risk characteristics of effluent from wastewater treatment plants in central area of Luzhou[J]. ENVIRONMENTAL ENGINEERING , 2025, 43(1): 135-143. doi: 10.13205/j.hjgc.202501015
    [2]GAO Wenyuan, ZOU Lin, ZHU Junyi, XIAO Tongjue, YU Yi, SHEN Jianlin. TEMPORAL AND SPATIAL VARIATION CHARACTERISTICS AND DRIVING FACTORS OF SURFACE WATER QUALITY IN HUNAN PROVINCE, CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(8): 17-24. doi: 10.13205/j.hjgc.202408003
    [3]WU Yi, WANG Hua, DENG Yanqing, LI Xiaoying, XU Haosen. EVALUATION AND DRIVING CHARACTERISTICS OF WATER NUTRIENTS IN POYANG LAKE BASED ON TLI METHOD[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(5): 10-17. doi: 10.13205/j.hjgc.202405002
    [4]LI Yunong, WEN Donghui. IMPACTS OF WASTEWATER TREATMENT PLANTS EFFLUENT ON MICROBIAL COMMUNITY OF RECEIVING WATER BODIES[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(9): 167-179. doi: 10.13205/j.hjgc.202409016
    [5]WANG Yan, WANG Jie, XIE Zijian, LI Chunhua, YE Chun, MIAO Kexin, WEI Weiwei, ZHENG Ye. NON-POINT SOURCE POLLUTIONS IN TYPICAL RIVER BASINS IN HILLY AND MOUNTAINOUS AREAS AND PLAIN RIVER NETWORK AREA IN CHINA[J]. ENVIRONMENTAL ENGINEERING , 2024, 42(10): 33-40. doi: 10.13205/j.hjgc.202410005
    [6]LIU Wenqiang, YU Dawei, LI Kun, ZHENG Libing, ZHU Liying, GUI Shuanglin, WEI Yuansong. EFFECTS OF RAINFALL CHARACTERISTICS ON RIVER WATER QUALITY IN DIFFERENT WATER PERIODS: A CASE STUDY OF NANCHANG SECTION IN THE GANJIANG RIVER[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(8): 91-99. doi: 10.13205/j.hjgc.202308012
    [7]PENG Yuyao, LI Panwu, GAO Xiaobo, YU Huibin, GUO Xujing. EFFECT OF LOESS FLOCCULANT ON WATER PURIFICATION AND DISSOLVED ORGANIC MATTER REMOVAL IN SHAHU LAKE[J]. ENVIRONMENTAL ENGINEERING , 2023, 41(5): 140-146. doi: 10.13205/j.hjgc.202305019
    [8]WANG Gang, WO Yubao, MAO Jingqiao, XIAO Yang, PENG Jirong. SPATIO-TEMPORAL VARIATION ANALYSIS OF WATER QUALITY IN SLUICE-CONTROLLED URBAN RIVER BASED ON TWO-STEP CLUSTER[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(1): 117-122,160. doi: 10.13205/j.hjgc.202201017
    [9]WANG Yiming, DING Lu, XU Jiaying, SHI Lei, LIU Yifan, LIANG Wenbo, YANG Xiaoli. CONSTRUCTION OF MICRO-ECOSYSTEM IN RURAL RIVERS AND IN-SITU REMEDIATION ON THE SEDIMENT[J]. ENVIRONMENTAL ENGINEERING , 2022, 40(11): 54-60. doi: 10.13205/j.hjgc.202211008
    [10]TIAN Han-xin, WANG Jia-jun, ZHOU Lei, XU De-fu, ZHANG Jian-wei, PENGCUO Ci-ren. WATER QUALITY STATUS AND POLLUTION ASSESSMENT OF LHALU WETLAND IN TIBET IN DIFFERENT PERIODS[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(6): 198-206. doi: 10.13205/j.hjgc.202106030
    [11]ZHOU Guo-hua, ZHANG Bei, WANG Gang, LI Meng-meng, CHEN Liang. ANALYSIS OF ODOR SOURCES IN STORMWATER PUMP POOL AND STORMWATER PIPE OF A STORMWATER PUMP STATION IN THE SINO-SINGAPORE TIANJIN ECO-CITY[J]. ENVIRONMENTAL ENGINEERING , 2021, 39(4): 30-35,127. doi: 10.13205/j.hjgc.202104006
    [12]QI Er-bing, HUANG Ya-ji, YUAN Qi, HU Hua-jun, FAN Cong-hui, CAO Yan-yan, DING Shou-yi. LIME COAGULATION-SUBMERGED EVAPORATION SYNERGISTIC TREATMENT FOR NANOFILTRATION MEMBRANE CONCENTRATE OF LANDFILL LEACHATE[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(12): 54-58,77. doi: 10.13205/j.hjgc.202012010
    [13]SHEN Jie, JIN Wei. REVIEW ON EFFECT OF URBAN WASTEWATER TREATMENT PLANT EFFLUENT ON RECEIVING WATER[J]. ENVIRONMENTAL ENGINEERING , 2020, 38(3): 92-98,115. doi: 10.13205/j.hjgc.202003016
  • Cited by

    Periodical cited type(2)

    1. 樊杰,谭振宇,黄发新,雷阳,閤成成. 污水厂尾水对河流水质和底泥细菌群落的影响. 绿色科技. 2024(14): 153-158 .
    2. 荆玉姝,王黎佳,王丽艳,牟润芝,陈栋,刘长青. 尾水排放对河道水质及底泥细菌群落结构影响. 环境科学与技术. 2021(01): 85-93 .

    Other cited types(3)

  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-0402.557.51012.515
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 11.3 %FULLTEXT: 11.3 %META: 81.0 %META: 81.0 %PDF: 7.6 %PDF: 7.6 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 8.5 %其他: 8.5 %China: 2.4 %China: 2.4 %[]: 0.4 %[]: 0.4 %上海: 2.0 %上海: 2.0 %临夏回族自治州: 0.2 %临夏回族自治州: 0.2 %临汾: 0.2 %临汾: 0.2 %乌鲁木齐: 0.2 %乌鲁木齐: 0.2 %伊犁哈萨克自治州: 0.4 %伊犁哈萨克自治州: 0.4 %保定: 0.2 %保定: 0.2 %信阳: 0.7 %信阳: 0.7 %兰州: 1.7 %兰州: 1.7 %北京: 8.3 %北京: 8.3 %十堰: 0.2 %十堰: 0.2 %南京: 2.0 %南京: 2.0 %南京市江宁区: 0.2 %南京市江宁区: 0.2 %南宁: 0.4 %南宁: 0.4 %南昌: 0.2 %南昌: 0.2 %厦门: 0.7 %厦门: 0.7 %台州: 0.9 %台州: 0.9 %呼和浩特: 0.2 %呼和浩特: 0.2 %天津: 1.3 %天津: 1.3 %太原: 0.4 %太原: 0.4 %安康: 0.4 %安康: 0.4 %常德: 0.2 %常德: 0.2 %广州: 3.3 %广州: 3.3 %张家口: 1.5 %张家口: 1.5 %徐州: 0.2 %徐州: 0.2 %成都: 0.7 %成都: 0.7 %扬州: 0.2 %扬州: 0.2 %昆明: 1.5 %昆明: 1.5 %晋城: 0.4 %晋城: 0.4 %朝阳: 0.2 %朝阳: 0.2 %杭州: 1.3 %杭州: 1.3 %武汉: 1.7 %武汉: 1.7 %汕头: 0.7 %汕头: 0.7 %江门: 0.2 %江门: 0.2 %沈阳: 0.2 %沈阳: 0.2 %济源: 0.2 %济源: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 0.7 %温州: 0.7 %湖州: 0.7 %湖州: 0.7 %漯河: 1.5 %漯河: 1.5 %绍兴: 0.2 %绍兴: 0.2 %芒廷维尤: 8.7 %芒廷维尤: 8.7 %芝加哥: 0.4 %芝加哥: 0.4 %苏州: 1.1 %苏州: 1.1 %莱芜: 0.7 %莱芜: 0.7 %西宁: 29.8 %西宁: 29.8 %西安: 1.3 %西安: 1.3 %西雅图: 0.2 %西雅图: 0.2 %贵阳: 0.7 %贵阳: 0.7 %运城: 1.7 %运城: 1.7 %通辽: 0.2 %通辽: 0.2 %遵义: 0.2 %遵义: 0.2 %邢台: 0.2 %邢台: 0.2 %邯郸: 0.4 %邯郸: 0.4 %郑州: 2.4 %郑州: 2.4 %重庆: 1.1 %重庆: 1.1 %银川: 0.4 %银川: 0.4 %长沙: 0.2 %长沙: 0.2 %长治: 0.2 %长治: 0.2 %阳泉: 0.9 %阳泉: 0.9 %阿克苏: 0.2 %阿克苏: 0.2 %青岛: 0.2 %青岛: 0.2 %鞍山: 0.2 %鞍山: 0.2 %其他China[]上海临夏回族自治州临汾乌鲁木齐伊犁哈萨克自治州保定信阳兰州北京十堰南京南京市江宁区南宁南昌厦门台州呼和浩特天津太原安康常德广州张家口徐州成都扬州昆明晋城朝阳杭州武汉汕头江门沈阳济源深圳温州湖州漯河绍兴芒廷维尤芝加哥苏州莱芜西宁西安西雅图贵阳运城通辽遵义邢台邯郸郑州重庆银川长沙长治阳泉阿克苏青岛鞍山

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (334) PDF downloads(9) Cited by(5)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return